-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference_video_retrieval.py
358 lines (265 loc) · 12 KB
/
inference_video_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
from tqdm import tqdm
import json
import numpy as np
from pathlib import Path
import json
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
import clip
class VideoFramesDataset(Dataset):
def __init__(self, frame_dir, video_ids, preprocess_fn, args):
"""
Dataset to extract features directly from video frames.
Used to batch video feature extraction.
"""
self.all_frame_dir = Path(frame_dir)
self.video_ids = video_ids
self.args = args
self.preprocess_fn = preprocess_fn
def __len__(self):
return len(self.video_ids)
def __getitem__(self, idx):
video_id = self.video_ids[idx]
video_frame_dir = self.all_frame_dir / video_id
# frame_000000.jpg to frame_000031.jpg
frame_paths = [str(video_frame_dir / f"frame_{str(i).zfill(6)}.jpg") for i in range(args.n_model_frames)]
if self.args.n_model_frames > 0:
n_frames = len(frame_paths)
# Uniformly subsample via linspace
frame_ids = np.linspace(0, n_frames - 1, self.args.n_model_frames).astype(int)
frame_paths = [frame_paths[i] for i in frame_ids]
frames = []
for frame_path in frame_paths:
img = Image.open(frame_path).convert('RGB')
frame = self.preprocess_fn(img)
frames.append(frame)
frames = torch.stack(frames)
# assert frames.shape == (32, 3, 224, 224)
return frames
def collate_fn(self, batch):
batch_frames = torch.stack(batch)
# assert batch_frames.shape == (self.args.batch_size, 32, 3, 224, 224)
return batch_frames
def get_dataloader(self, batch_size=10, num_workers=4):
dataloader = DataLoader(self,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
collate_fn=self.collate_fn)
return dataloader
class VideoRetrievalDataset(Dataset):
def __init__(self, split, args):
"""
Dataset to for video retrieval.
only used for dataset creation.
not used with dataloader.
"""
self.args = args
self.data = []
self.prompts = []
self.videos = []
self.video_durations = []
self.video_feat_dir = args.video_feature_dir
self.asr_dir = args.asr_dir
with open(f"{args.data_dir}/all_data_{split}.json", 'r') as f:
data = json.load(f)
for prompt in data:
self.prompts.append(prompt)
for video in data[prompt]:
self.videos.append(video)
self.data.append({
"video_id": video.replace(".mp4", ""),
"clip_feature": f"{self.video_feat_dir}/{video}.pt",
"asr": f"{self.asr_dir}/{video.replace('.mp4', '')}.srt",
"target": prompt,
"v_duration": data[prompt][video]["v_duration"]
})
self.video_durations.append(data[prompt][video]["v_duration"])
print(f"self.videos: {len(self.videos)}")
print(f"self.prompts: {len(self.prompts)}")
class NegativeVideoRetrievalDataset(Dataset):
def __init__(self, split, args):
"""
Dataset to include negative distractors for video retrieval.
only used for dataset creation.
not used with dataloader.
"""
self.args = args
self.data = []
self.prompts = []
self.videos = []
self.video_durations = []
self.video_feat_dir = args.video_feature_dir
self.asr_dir = args.asr_dir
print(f'split: {split}')
with open(f"{args.data_dir}/all_data_{split}.json", 'r') as f:
data = json.load(f)
for prompt in data:
self.prompts.append(prompt)
for video in data[prompt]:
self.videos.append(video)
self.data.append({
"video_id": video.replace(".mp4", ""),
"clip_feature": f"{self.video_feat_dir}/{video}.pt",
"asr": f"{self.asr_dir}/{video.replace('.mp4', '')}.srt",
})
print(f"self.videos: {len(self.videos)}")
print(f"self.prompts: {len(self.prompts)}")
if __name__ == "__main__":
from args import get_parser
parser = get_parser()
args = parser.parse_args()
from accelerate.utils import set_seed
import random
import numpy as np
set_seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
device = args.device
if args.video_retrieval_model == 'clip':
clip_model, _ = clip.load("ViT-B/32", device="cpu", jit=False)
if args.load is not None:
LOAD = args.load
print("Loaded from:", LOAD)
clip_model.load_state_dict(torch.load(LOAD, map_location='cpu'))
clip_model = clip_model.to(device)
clip_model.eval()
elif args.video_retrieval_model == 'clip_g':
import sys
sys.path.append("./EVA_clip")
from eva_clip import build_eva_model_and_transforms
clip_model, clip_preprocess = build_eva_model_and_transforms(
"EVA_CLIP_g_14",
pretrained='./pretrained_weights/eva_clip_psz14.pt')
print("Loaded EVA CLIP G")
clip_model = clip_model.to(device)
clip_model.eval()
test_dataset = VideoRetrievalDataset("test", args)
prompts = test_dataset.prompts
all_video_ids = test_dataset.videos
# Loading distractor videos to augment the video in the test set
distractor_dataset = NegativeVideoRetrievalDataset("test_negative_samples", args)
all_video_ids = test_dataset.videos + distractor_dataset.videos
print('Number of prompts: ', len(prompts))
print('Number of videos: ', len(all_video_ids))
batch_size = args.eval_batch_size
print("Computing text embeddings")
all_text_embeds = []
for i in tqdm(range(0, len(prompts), batch_size), desc="Computing text embeddings", colour="green"):
with torch.no_grad():
if args.video_retrieval_model in ['clip', 'clip_g']:
text_tokens = clip.tokenize(prompts[i:i+batch_size]).to(device)
text_embeds = clip_model.encode_text(text_tokens)
text_embeds = text_embeds.float()
text_embeds = text_embeds.to("cpu")
text_embeds /= text_embeds.norm(dim=-1, keepdim=True)
all_text_embeds.append(text_embeds)
all_text_embeds = torch.cat(all_text_embeds, dim=0)
print(f"Text embeddings shape: {all_text_embeds.shape}")
print("Computing video embeddings")
if args.raw_frame:
video_frame_dir = args.video_dir
# frame_dir, video_ids, preprocess_fn, args):
print("Using raw frames")
print("Video frame dir: ", video_frame_dir)
if args.save_feats:
num_process = 1
process_id = 0
if args.num_process > 0:
num_process = args.num_process
process_id = args.process_id
print("All video ids: ", len(all_video_ids))
print("Num process: ", num_process)
all_video_ids = all_video_ids[process_id::num_process]
print("Video ids: ", len(all_video_ids))
print("Process id: ", process_id)
video_frame_dataset = VideoFramesDataset(
video_frame_dir,
all_video_ids,
clip_preprocess,
args,
)
video_frame_dataloader = video_frame_dataset.get_dataloader(
batch_size=batch_size,
num_workers=args.num_workers,
)
all_video_embeds = []
if args.save_feats:
os.makedirs(args.video_feature_dir, exist_ok=True)
print("Saving feats to: ", args.video_feature_dir)
for i, batch in enumerate(tqdm(video_frame_dataloader, desc=f"Computing video embeddings - N frames: {args.n_model_frames}", colour="green")):
B = batch.shape[0]
frames = batch
assert frames.shape == (B, args.n_model_frames, 3, 224, 224), f"Batch shape: {frames.shape}"
frames = frames.to(device)
if args.video_retrieval_model in ['clip', 'clip_g']:
frames = frames.view(-1, 3, 224, 224)
with torch.no_grad():
video_embeds = clip_model.encode_image(frames)
video_embeds = video_embeds.float()
video_embeds = video_embeds.view(B, args.n_model_frames, 1024)
if args.save_feats:
for j in range(B):
video_id = all_video_ids[i*batch_size + j]
video_feat_dir = Path(args.video_feature_dir)
video_feat_path = video_feat_dir / f"{video_id}.pt"
torch.save(video_embeds[j], video_feat_path)
# Avgpool
video_embeds = video_embeds.mean(dim=1, keepdim=False)
video_embeds /= video_embeds.norm(dim=-1, keepdim=True)
video_embeds = video_embeds.to("cpu")
all_video_embeds.append(video_embeds)
else:
all_video_embeds = []
video_feat_dir = Path(args.video_feature_dir)
print(f"Video feature dir: {video_feat_dir}")
print(f"Video feature dir exists: {video_feat_dir.exists()}")
print(f"N frames: {args.n_model_frames}")
for i in tqdm(range(len(all_video_ids)), desc=f"Computing video embeddings - N frames: {args.n_model_frames}", colour="green"):
video_id = all_video_ids[i]
# video_duration = all_video_durations[i]
video_feat_dir = Path(args.video_feature_dir)
video_feat_path = video_feat_dir / f"{video_id}.pt"
video_embeds = torch.load(video_feat_path, map_location="cpu")
video_duration = video_embeds.shape[0]
if args.n_model_frames > 0:
# video_features: [n_frames, 512]
n_frames = video_embeds.shape[0]
# Uniformly subsample via linspace
# if n_frames > args.n_model_frames:
frame_ids = np.linspace(0, n_frames - 1, args.n_model_frames).astype(int)
frame_ids = torch.from_numpy(frame_ids)
video_embeds = video_embeds[frame_ids]
video_embeds = video_embeds.float()
if args.video_retrieval_model in ['clip', 'clip_g']:
# CLIP-zeroshot avgpool
video_embeds = video_embeds.mean(dim=0, keepdim=True)
video_embeds = video_embeds.to("cpu")
video_embeds /= video_embeds.norm(dim=-1, keepdim=True)
all_video_embeds.append(video_embeds)
all_video_embeds = torch.cat(all_video_embeds, dim=0)
print(f"Video embeddings shape: {all_video_embeds.shape}")
print("Computing scores")
text_to_video_scores = torch.matmul(all_text_embeds, all_video_embeds.T)
print(f"Scores shape: {text_to_video_scores.shape}")
prompt_video_scores = { }
for i, prompt in enumerate(tqdm(prompts, desc="Preparing output json", colour="green")):
prompt_video_scores[prompt] = {
"videos": [],
"scores": []
}
prompt_video_scores[prompt]["videos"] = all_video_ids
prompt_video_scores[prompt]["scores"] = text_to_video_scores[i].tolist()
save_dir = Path("VR_results")
if not save_dir.exists():
save_dir.mkdir()
# "clip_FT_avgpool.json"
save_path = save_dir / f"{args.run_name}.json"
with open(save_path, 'w') as f:
json.dump(prompt_video_scores, f, indent=4)
print(f"Saved results to {save_path}")