forked from cameron314/readerwriterqueue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreaderwritercircularbuffer.h
321 lines (284 loc) · 11.4 KB
/
readerwritercircularbuffer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// ©2020 Cameron Desrochers.
// Distributed under the simplified BSD license (see the license file that
// should have come with this header).
// Provides a C++11 implementation of a single-producer, single-consumer wait-free concurrent
// circular buffer (fixed-size queue).
#pragma once
#include <utility>
#include <chrono>
#include <memory>
#include <cstdlib>
#include <cstdint>
#include <cassert>
// Note that this implementation is fully modern C++11 (not compatible with old MSVC versions)
// but we still include atomicops.h for its LightweightSemaphore implementation.
#include "atomicops.h"
#ifndef MOODYCAMEL_CACHE_LINE_SIZE
#define MOODYCAMEL_CACHE_LINE_SIZE 64
#endif
namespace moodycamel {
template<typename T>
class BlockingReaderWriterCircularBuffer
{
public:
typedef T value_type;
public:
explicit BlockingReaderWriterCircularBuffer(std::size_t capacity)
: maxcap(capacity), mask(), rawData(), data(),
slots_(new spsc_sema::LightweightSemaphore(static_cast<spsc_sema::LightweightSemaphore::ssize_t>(capacity))),
items(new spsc_sema::LightweightSemaphore(0)),
nextSlot(0), nextItem(0)
{
// Round capacity up to power of two to compute modulo mask.
// Adapted from http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
--capacity;
capacity |= capacity >> 1;
capacity |= capacity >> 2;
capacity |= capacity >> 4;
for (std::size_t i = 1; i < sizeof(std::size_t); i <<= 1)
capacity |= capacity >> (i << 3);
mask = capacity++;
rawData = static_cast<char*>(std::malloc(capacity * sizeof(T) + std::alignment_of<T>::value - 1));
data = align_for<T>(rawData);
}
BlockingReaderWriterCircularBuffer(BlockingReaderWriterCircularBuffer&& other)
: maxcap(0), mask(0), rawData(nullptr), data(nullptr),
slots_(new spsc_sema::LightweightSemaphore(0)),
items(new spsc_sema::LightweightSemaphore(0)),
nextSlot(), nextItem()
{
swap(other);
}
BlockingReaderWriterCircularBuffer(BlockingReaderWriterCircularBuffer const&) = delete;
// Note: The queue should not be accessed concurrently while it's
// being deleted. It's up to the user to synchronize this.
~BlockingReaderWriterCircularBuffer()
{
for (std::size_t i = 0, n = items->availableApprox(); i != n; ++i)
reinterpret_cast<T*>(data)[(nextItem + i) & mask].~T();
std::free(rawData);
}
BlockingReaderWriterCircularBuffer& operator=(BlockingReaderWriterCircularBuffer&& other) noexcept
{
swap(other);
return *this;
}
BlockingReaderWriterCircularBuffer& operator=(BlockingReaderWriterCircularBuffer const&) = delete;
// Swaps the contents of this buffer with the contents of another.
// Not thread-safe.
void swap(BlockingReaderWriterCircularBuffer& other) noexcept
{
std::swap(maxcap, other.maxcap);
std::swap(mask, other.mask);
std::swap(rawData, other.rawData);
std::swap(data, other.data);
std::swap(slots_, other.slots_);
std::swap(items, other.items);
std::swap(nextSlot, other.nextSlot);
std::swap(nextItem, other.nextItem);
}
// Enqueues a single item (by copying it).
// Fails if not enough room to enqueue.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
bool try_enqueue(T const& item)
{
if (!slots_->tryWait())
return false;
inner_enqueue(item);
return true;
}
// Enqueues a single item (by moving it, if possible).
// Fails if not enough room to enqueue.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
bool try_enqueue(T&& item)
{
if (!slots_->tryWait())
return false;
inner_enqueue(std::move(item));
return true;
}
// Blocks the current thread until there's enough space to enqueue the given item,
// then enqueues it (via copy).
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
void wait_enqueue(T const& item)
{
while (!slots_->wait());
inner_enqueue(item);
}
// Blocks the current thread until there's enough space to enqueue the given item,
// then enqueues it (via move, if possible).
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
void wait_enqueue(T&& item)
{
while (!slots_->wait());
inner_enqueue(std::move(item));
}
// Blocks the current thread until there's enough space to enqueue the given item,
// or the timeout expires. Returns false without enqueueing the item if the timeout
// expires, otherwise enqueues the item (via copy) and returns true.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
bool wait_enqueue_timed(T const& item, std::int64_t timeout_usecs)
{
if (!slots_->wait(timeout_usecs))
return false;
inner_enqueue(item);
return true;
}
// Blocks the current thread until there's enough space to enqueue the given item,
// or the timeout expires. Returns false without enqueueing the item if the timeout
// expires, otherwise enqueues the item (via move, if possible) and returns true.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
bool wait_enqueue_timed(T&& item, std::int64_t timeout_usecs)
{
if (!slots_->wait(timeout_usecs))
return false;
inner_enqueue(std::move(item));
return true;
}
// Blocks the current thread until there's enough space to enqueue the given item,
// or the timeout expires. Returns false without enqueueing the item if the timeout
// expires, otherwise enqueues the item (via copy) and returns true.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
template<typename Rep, typename Period>
inline bool wait_enqueue_timed(T const& item, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_enqueue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Blocks the current thread until there's enough space to enqueue the given item,
// or the timeout expires. Returns false without enqueueing the item if the timeout
// expires, otherwise enqueues the item (via move, if possible) and returns true.
// Thread-safe when called by producer thread.
// No exception guarantee (state will be corrupted) if constructor of T throws.
template<typename Rep, typename Period>
inline bool wait_enqueue_timed(T&& item, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_enqueue_timed(std::move(item), std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Attempts to dequeue a single item.
// Returns false if the buffer is empty.
// Thread-safe when called by consumer thread.
// No exception guarantee (state will be corrupted) if assignment operator of U throws.
template<typename U>
bool try_dequeue(U& item)
{
if (!items->tryWait())
return false;
inner_dequeue(item);
return true;
}
// Blocks the current thread until there's something to dequeue, then dequeues it.
// Thread-safe when called by consumer thread.
// No exception guarantee (state will be corrupted) if assignment operator of U throws.
template<typename U>
void wait_dequeue(U& item)
{
while (!items->wait());
inner_dequeue(item);
}
// Blocks the current thread until either there's something to dequeue
// or the timeout expires. Returns false without setting `item` if the
// timeout expires, otherwise assigns to `item` and returns true.
// Thread-safe when called by consumer thread.
// No exception guarantee (state will be corrupted) if assignment operator of U throws.
template<typename U>
bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
{
if (!items->wait(timeout_usecs))
return false;
inner_dequeue(item);
return true;
}
// Blocks the current thread until either there's something to dequeue
// or the timeout expires. Returns false without setting `item` if the
// timeout expires, otherwise assigns to `item` and returns true.
// Thread-safe when called by consumer thread.
// No exception guarantee (state will be corrupted) if assignment operator of U throws.
template<typename U, typename Rep, typename Period>
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Returns a pointer to the next element in the queue (the one that would
// be removed next by a call to `try_dequeue` or `try_pop`). If the queue
// appears empty at the time the method is called, returns nullptr instead.
// Thread-safe when called by consumer thread.
inline T* peek()
{
if (!items->availableApprox())
return nullptr;
return inner_peek();
}
// Pops the next element from the queue, if there is one.
// Thread-safe when called by consumer thread.
inline bool try_pop()
{
if (!items->tryWait())
return false;
inner_pop();
return true;
}
// Returns a (possibly outdated) snapshot of the total number of elements currently in the buffer.
// Thread-safe.
inline std::size_t size_approx() const
{
return items->availableApprox();
}
// Returns the maximum number of elements that this circular buffer can hold at once.
// Thread-safe.
inline std::size_t max_capacity() const
{
return maxcap;
}
private:
template<typename U>
void inner_enqueue(U&& item)
{
std::size_t i = nextSlot++;
new (reinterpret_cast<T*>(data) + (i & mask)) T(std::forward<U>(item));
items->signal();
}
template<typename U>
void inner_dequeue(U& item)
{
std::size_t i = nextItem++;
T& element = reinterpret_cast<T*>(data)[i & mask];
item = std::move(element);
element.~T();
slots_->signal();
}
T* inner_peek()
{
return reinterpret_cast<T*>(data) + (nextItem & mask);
}
void inner_pop()
{
std::size_t i = nextItem++;
reinterpret_cast<T*>(data)[i & mask].~T();
slots_->signal();
}
template<typename U>
static inline char* align_for(char* ptr)
{
const std::size_t alignment = std::alignment_of<U>::value;
return ptr + (alignment - (reinterpret_cast<std::uintptr_t>(ptr) % alignment)) % alignment;
}
private:
std::size_t maxcap; // actual (non-power-of-two) capacity
std::size_t mask; // circular buffer capacity mask (for cheap modulo)
char* rawData; // raw circular buffer memory
char* data; // circular buffer memory aligned to element alignment
std::unique_ptr<spsc_sema::LightweightSemaphore> slots_; // number of slots currently free (named with underscore to accommodate Qt's 'slots' macro)
std::unique_ptr<spsc_sema::LightweightSemaphore> items; // number of elements currently enqueued
char cachelineFiller0[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(char*) * 2 - sizeof(std::size_t) * 2 - sizeof(std::unique_ptr<spsc_sema::LightweightSemaphore>) * 2];
std::size_t nextSlot; // index of next free slot to enqueue into
char cachelineFiller1[MOODYCAMEL_CACHE_LINE_SIZE - sizeof(std::size_t)];
std::size_t nextItem; // index of next element to dequeue from
};
}