forked from Scarelette/CultureLLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiverse_gain.py
67 lines (53 loc) · 1.82 KB
/
diverse_gain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import openai, fire
import math, jsonlines, time
def getEmbedding(s):
output = None
times = 0
while output is None and times <= 10:
try:
times += 1
response = openai.Embedding.create(
api_key="xxx",
input=s,
model="text-embedding-ada-002"
)
output = response['data'][0]['embedding']
except Exception as e:
print(e)
print('Retrying...')
time.sleep(5)
if times >= 10:
print('Failed! Model Input: ', s)
output = ''
return output
def computeDis(s1, s2):
embed_1 = getEmbedding(s1)
embed_2 = getEmbedding(s2)
return math.sqrt(sum([(a - b)**2 for (a,b) in zip(embed_1, embed_2)]))
def run(new_data_file, origin_data_file):
num = 0
diverse_gain = 0
file_path = new_data_file
with open(file_path, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
print(num)
num += 1
content = item['q_content']
dis_list = []
with open(origin_data_file, "r+", encoding="utf8") as f2:
for ori_item in jsonlines.Reader(f2):
ori_content = ori_item['q_content']
cur_dis = computeDis(content, ori_content)
dis_list.append(cur_dis)
print('Cur dis: ', cur_dis)
final_dis = min(dis_list)
print('Final dis: ', final_dis)
diverse_gain += final_dis
diverse_gain /= num
print('Diverse Gain: ', diverse_gain)
with jsonlines.open('results/diverse_gain.jsonl',mode='a') as writer:
item = {'file': file_path, 'diverse_gain': diverse_gain}
writer.write(item)
if __name__ == '__main__':
fire.Fire(run)
# computeDiverse()