-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPersonalRank.java
245 lines (196 loc) · 6.68 KB
/
PersonalRank.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
package PersonalRank算法;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
import java.util.Set;
//precision=%15.159893404397067 recall=%7.285155155715989 coverage=%2.8393726338561387 popularity=7.710734638003809
public class PersonalRank {
HashMap<Integer,Set<Integer>> trainset=new HashMap<Integer,Set<Integer>>();
HashMap<Integer,Set<Integer>> testset=new HashMap<Integer,Set<Integer>>();
HashMap<Integer,Set<Integer>> inverse_table=new HashMap<Integer,Set<Integer>>();
HashMap<Integer,Integer> movie_popular=new HashMap<Integer,Integer>();
int i=0;
int trainset_length;
int testset_length;
int user_sim_mat[][];
double user_simlarity[][];
int movie_count=0;
List<Rank> recommendedMoviesList=null;
List<Ralated_user> ralatedUsersList=null;
int k=0;
int n=10;
Random random=new Random(0);
public void generate_dataset(int pivot) throws IOException{
File file=new File("E:\\workspace\\ml-1m\\ratings.dat");
if(!file.exists()||file.isDirectory())
throw new FileNotFoundException();
BufferedReader br=new BufferedReader(new FileReader(file));
String temp=null;
while ((temp=br.readLine())!=null) {
String[] content=temp.replaceAll("\n\t", "").split("::");
if(random.nextInt(8)==pivot){
if(testset.containsKey(Integer.parseInt(content[0]))){
HashSet<Integer> set =(HashSet<Integer>) testset.get(Integer.parseInt(content[0]));
set.add(Integer.parseInt(content[1]));
testset.put(Integer.parseInt(content[0]),set);
}else{
Set<Integer> set=new HashSet<Integer>();
set.add(Integer.parseInt(content[1]));
testset.put(Integer.parseInt(content[0]),set);
}
testset_length++;
}else{
if(trainset.containsKey(Integer.parseInt(content[0]))){
HashSet<Integer> set =(HashSet<Integer>) trainset.get(Integer.parseInt(content[0]));
set.add(Integer.parseInt(content[1]));
trainset.put(Integer.parseInt(content[0]),set);
}else{
Set<Integer> set=new HashSet<Integer>();
set.add(Integer.parseInt(content[1]));
trainset.put(Integer.parseInt(content[0]),set);
}
trainset_length++;
}
i++;
if (i%100000 == 0)
System.out.println("已装载"+i+"文件");
}
System.out.println("测试集和训练集分割完成,测试集长度:"+testset_length+",训练集长度:"+trainset_length);
}
// build inverse table for item-users
// key=movieID, value=list of userIDs who have seen this movie
public void calc_user_sim(){
for(int obj : trainset.keySet()){
Set<Integer> value = trainset.get(obj );
Iterator<Integer> it=value.iterator();
while(it.hasNext())
{
int o=it.next();
if(inverse_table.containsKey(o)){
Set<Integer> set=inverse_table.get(o);
set.add(obj);
inverse_table.put(o,set);
}else {
Set<Integer> set=new HashSet<Integer>();
set.add(obj);
inverse_table.put(o,set);
}
// count item popularity at the same time
if(!movie_popular.containsKey(o)){
movie_popular.put(o,1);
}else {
movie_popular.put(o,movie_popular.get(o)+1);
}
}
}
System.out.println("inverse——table创建成功");
//建立反转表的目的是方便建立co-rated movies 矩阵
movie_count=inverse_table.size();
System.out.println("movie number is"+movie_count);
}
double alpah=0.6;
public void personalRank(int root,int max_step){
double rank1[]=new double[trainset.size()+1];
double rank2[]=new double[3953];
double temp1[]=new double[trainset.size()+1];
double temp2[]=new double[3953];
rank1[root]=1;
for(int k=0;k<max_step;k++){ //遍历trainSet
for(int i=0;i<temp1.length;i++) temp1[i]=0.0;
for(int j=0;j<temp2.length;j++) temp2[j]=0.0;
Iterator<Integer> u=trainset.keySet().iterator();
while(u.hasNext()){
int uu=u.next();
Set<Integer> movies=trainset.get(uu);
Iterator<Integer> it=movies.iterator();
while(it.hasNext()){
temp2[it.next()]+=alpah*rank1[uu]/movies.size();
}
}
Iterator<Integer> m=inverse_table.keySet().iterator();
while(m.hasNext()){
int mm=m.next();
Set<Integer> us=inverse_table.get(mm);
Iterator<Integer> it=us.iterator();
while(it.hasNext()){
temp1[it.next()]+=alpah*rank2[mm]/us.size();
}
}
temp1[root]+=1-alpah;
for(int i=0;i<temp1.length;i++)
rank1[i]=temp1[i];
for(int i=0;i<temp2.length;i++)
rank2[i]=temp2[i];
}
recommendedMoviesList=new ArrayList<Rank>();
Set<Integer> watched_movies=trainset.get(root);
for(int i=0;i<rank2.length;i++){
if(watched_movies.contains(i)||rank2[i]==0.0)
continue;
Rank r=new Rank();
r.setMovie(i);
r.setSum_simlatrity(rank2[i]);
recommendedMoviesList.add(r);
}
Heapsort ss=new Heapsort();
ss.sort(recommendedMoviesList, n);
}
public void evaluate(){
int rec_count=0;
int test_count=0;
int hit=0;
double popularSum=0;
Set<Integer> all_rec_movies=new HashSet<Integer>();
Iterator<Integer> it=trainset.keySet().iterator();
while(it.hasNext()){
int user=it.next();
if(user%5==0)
System.out.println("已经推荐了"+user+"个用户");
Set<Integer> test_movies=testset.get(user);
personalRank(user, 20);
if(recommendedMoviesList!=null&&test_movies!=null){
if(recommendedMoviesList.size()<n) n=recommendedMoviesList.size();
for(int i=0;i<n;i++){
Rank rec_movie=recommendedMoviesList.get(i);
if(test_movies.contains(rec_movie.getMovie())){
hit++;
}
all_rec_movies.add(rec_movie.getMovie());
popularSum+=Math.log(1+movie_popular.get(rec_movie.getMovie()));
}
rec_count+=n;
test_count+=test_movies.size();
}
}
double precision=hit/(1.0*rec_count);
double recall=hit/(1.0*test_count);
double coverage=all_rec_movies.size()/(1.0*movie_count);
double popularity=popularSum/(1.0*rec_count);
System.out.println("precision=%"+precision*100+"\trecall=%"+recall*100+"\tcoverage=%"+coverage*100+"\tpopularity="+popularity);
}
public static void main(String[] args) throws IOException {
PersonalRank ss=new PersonalRank();
ss.generate_dataset(3);
ss.calc_user_sim();
Set<Integer> set=new HashSet<Integer>();
set.add(5);
set.add(10);
set.add(20);
set.add(40);
set.add(80);
set.add(160);
Iterator<Integer> it=set.iterator();
while(it.hasNext()){
ss.k=it.next();
ss.evaluate();
}
}
}