forked from borglab/gtsam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFisheyeExample.cpp
130 lines (102 loc) · 4.86 KB
/
FisheyeExample.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file FisheyeExample.cpp
* @brief A visualSLAM example for the structure-from-motion problem on a
* simulated dataset. This version uses a fisheye camera model and a GaussNewton
* solver to solve the graph in one batch
* @author ghaggin
* @Date Apr 9,2020
*/
/**
* A structure-from-motion example with landmarks
* - The landmarks form a 10 meter cube
* - The robot rotates around the landmarks, always facing towards the cube
*/
// For loading the data
#include "SFMdata.h"
// Camera observations of landmarks will be stored as Point2 (x, y).
#include <gtsam/geometry/Point2.h>
// Each variable in the system (poses and landmarks) must be identified with a
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
// (X1, X2, L1). Here we will use Symbols
#include <gtsam/inference/Symbol.h>
// Use GaussNewtonOptimizer to solve graph
#include <gtsam/nonlinear/GaussNewtonOptimizer.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// In GTSAM, measurement functions are represented as 'factors'. Several common
// factors have been provided with the library for solving robotics/SLAM/Bundle
// Adjustment problems. Here we will use Projection factors to model the
// camera's landmark observations. Also, we will initialize the robot at some
// location using a Prior factor.
#include <gtsam/geometry/Cal3Fisheye.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/ProjectionFactor.h>
#include <fstream>
#include <vector>
using namespace std;
using namespace gtsam;
using symbol_shorthand::L; // for landmarks
using symbol_shorthand::X; // for poses
/* ************************************************************************* */
int main(int argc, char *argv[]) {
// Define the camera calibration parameters
auto K = boost::make_shared<Cal3Fisheye>(
278.66, 278.48, 0.0, 319.75, 241.96, -0.013721808247486035,
0.020727425669427896, -0.012786476702685545, 0.0025242267320687625);
// Define the camera observation noise model, 1 pixel stddev
auto measurementNoise = noiseModel::Isotropic::Sigma(2, 1.0);
// Create the set of ground-truth landmarks
const vector<Point3> points = createPoints();
// Create the set of ground-truth poses
const vector<Pose3> poses = createPoses();
// Create a Factor Graph and Values to hold the new data
NonlinearFactorGraph graph;
Values initialEstimate;
// Add a prior on pose x0, 0.1 rad on roll,pitch,yaw, and 30cm std on x,y,z
auto posePrior = noiseModel::Diagonal::Sigmas(
(Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());
graph.emplace_shared<PriorFactor<Pose3>>(X(0), poses[0], posePrior);
// Add a prior on landmark l0
auto pointPrior = noiseModel::Isotropic::Sigma(3, 0.1);
graph.emplace_shared<PriorFactor<Point3>>(L(0), points[0], pointPrior);
// Add initial guesses to all observed landmarks
// Intentionally initialize the variables off from the ground truth
static const Point3 kDeltaPoint(-0.25, 0.20, 0.15);
for (size_t j = 0; j < points.size(); ++j)
initialEstimate.insert<Point3>(L(j), points[j] + kDeltaPoint);
// Loop over the poses, adding the observations to the graph
for (size_t i = 0; i < poses.size(); ++i) {
// Add factors for each landmark observation
for (size_t j = 0; j < points.size(); ++j) {
PinholeCamera<Cal3Fisheye> camera(poses[i], *K);
Point2 measurement = camera.project(points[j]);
graph.emplace_shared<GenericProjectionFactor<Pose3, Point3, Cal3Fisheye>>(
measurement, measurementNoise, X(i), L(j), K);
}
// Add an initial guess for the current pose
// Intentionally initialize the variables off from the ground truth
static const Pose3 kDeltaPose(Rot3::Rodrigues(-0.1, 0.2, 0.25),
Point3(0.05, -0.10, 0.20));
initialEstimate.insert(X(i), poses[i] * kDeltaPose);
}
GaussNewtonParams params;
params.setVerbosity("TERMINATION");
params.maxIterations = 10000;
std::cout << "Optimizing the factor graph" << std::endl;
GaussNewtonOptimizer optimizer(graph, initialEstimate, params);
Values result = optimizer.optimize();
std::cout << "Optimization complete" << std::endl;
std::cout << "initial error=" << graph.error(initialEstimate) << std::endl;
std::cout << "final error=" << graph.error(result) << std::endl;
std::ofstream os("examples/vio_batch.dot");
graph.saveGraph(os, result);
return 0;
}
/* ************************************************************************* */