-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
269 lines (231 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import argparse
import torch.optim as optim
import torch.nn as nn
from models import CNN, VAE
from torchvision import transforms, datasets
import torchvision
import torch
from torch.autograd import Variable
from torchvision.utils import save_image
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
log = []
loss_curves = []
acc_curves = []
def str2bool(v):
# codes from : https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def config():
parser = argparse.ArgumentParser(description="MNIST VAE CLASSIFIER")
parser.add_argument('--channels', default=1, type=int)
parser.add_argument('--cuda', default=True, type=str2bool)
parser.add_argument('--batch_size', default=128, type=int)
parser.add_argument('--lr', default=1e-3, type=float)
parser.add_argument('--zdim', default=2, type=int)
parser.add_argument('--epoch', default=100, type=int)
parser.add_argument('--model', default='vae', type=str)
parser.add_argument('--test', default=True, type=str2bool)
parser.add_argument('--train', default=True, type=str2bool)
parser.add_argument('--directory', default='samples/sample.jpg', type=str)
parser.add_argument('--lam', default=1.0, type=float)
parser.add_argument('--eps', default=0, type=float)
parser.add_argument('--fig_name', default='normal.jpg', type=str)
args = parser.parse_args()
return args
def show_image(img):
img = to_img(img)
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
def vae_loss(recon_x, x, mu, logvar):
# recon_x is the probability of a multivariate Bernoulli distribution p.
# -log(p(x)) is then the pixel-wise binary cross-entropy.
# Averaging or not averaging the binary cross-entropy over all pixels here
# is a subtle detail with big effect on training, since it changes the weight
# we need to pick for the other loss term by several orders of magnitude.
# Not averaging is the direct implementation of the negative log likelihood,
# but averaging makes the weight of the other loss term independent of the image resolution.
recon_loss = F.binary_cross_entropy(recon_x.view(-1, 784), x.view(-1, 784), reduction='sum')
# KL-divergence between the prior distribution over latent vectors
# (the one we are going to sample from when generating new images)
# and the distribution estimated by the generator for the given image.
kldivergence = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return recon_loss + 1 * kldivergence
def t_loss(inputs, outputs, c, mean, var, labels, args):
criterion = nn.CrossEntropyLoss()
classification_loss = criterion(c, labels)
vae_l = vae_loss(outputs, inputs, mean, var)
return classification_loss + args.lam * vae_l
def train_vae(model, train_loader, device, args):
model.train()
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5)
total_step = len(train_loader)
acc_list = []
train_loss_avg = []
print("Lambda: " + str(args.lam))
log.append("Lambda: " + str(args.lam) + "\n")
train_acc_avg = []
for epoch in range(args.epoch):
loss_tracker = 0
train_loss_avg.append(0)
train_acc_avg.append(0)
batches = 0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs, classification, mean, var = model(inputs)
loss = t_loss(inputs, outputs, classification, mean, var, labels, args)
loss.backward()
optimizer.step()
loss_tracker += loss.item()
train_loss_avg[-1] += loss.item()
total = labels.size(0)
_, predicted = torch.max(classification.data, 1)
correct = (predicted == labels).sum().item()
acc_list.append(correct / total)
train_acc_avg[-1] += (correct/total)
if (i+1) % 100 == 0:
#print("Epoch: [%d/%d], Step [%d/%d], Running Loss: %.4f Loss: %.4f, Classification Accuracy: %.2f Reconstruction Loss: %.4f KL Loss: %.4f Class Loss: %.4f" %(epoch, args.epoch,
# i+1, total_step, loss_tracker//100, loss.item(), correct/total*100, recon_loss.item(), kl_loss.item(), classification_loss.item()))
print("Epoch: [%d/%d], Step [%d/%d], Loss: %.4f, Classification Accuracy: %.2f" % (epoch, args.epoch, i+1, total_step, loss.item(), correct/total*100))
if args.model == 'run-thru':
file = open("log.txt", 'w')
log.append("Epoch: [%d/%d], Step [%d/%d], Loss: %.4f, Classification Accuracy: %.2f\n" % (epoch, args.epoch, i+1, total_step, loss.item(), correct/total*100))
for line in log:
file.write(line)
file.close()
batches += 1
train_loss_avg[-1] /= batches
train_acc_avg[-1] /= batches
if abs(train_loss_avg[-1] - train_loss_avg[len(train_loss_avg)-2])/train_loss_avg[-1] < args.eps:
break
acc_curves.append(train_acc_avg)
loss_curves.append(train_loss_avg)
def train_classifier(model, train_loader, device, args):
optimizer = optim.Adam(model.parameters(), lr=args.lr)
loss_fc = nn.CrossEntropyLoss()
acc_list = []
total_step = len(train_loader)
for epoch in range(args.epoch):
loss_tracker = 0
for i, data in enumerate(train_loader, 0):
inputs, labels = data
inputs = Variable(inputs.to(device))
labels = Variable(labels.to(device))
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fc(outputs, labels)
loss.backward()
loss_tracker += loss.item()
optimizer.step()
total = labels.size(0)
_, predicted = torch.max(outputs.data, 1)
correct = (predicted == labels).sum().item()
acc_list.append(correct / total)
if (i+1) % 100 == 0:
print("Epoch: [%d/%d], Step [%d/%d], Running Loss: %.4f Loss: %.4f, Classification Accuracy: %.2f" %(epoch, args.epoch,
i+1, total_step, loss_tracker//100, loss.item(), correct/total*100))
def test_cnn(model, test_loader, device, args):
correct = 0
total = 0
model.eval()
with torch.no_grad():
for data in test_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs= model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.4f %%' % (100 * correct / total))
def test_vae(model, test_loader, device, args):
# test classification
model.to('cpu')
model.eval()
correct = 0
total = 0
loss_sum = 0
counter = 0
with torch.no_grad():
for data in test_loader:
images, labels = data[0], data[1]
outputs, classification, mean, var = model(images)
counter += 1
loss_sum += vae_loss(images, outputs, mean, var).item()
_, predicted = torch.max(classification.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.4f %%' % (100 * correct / total))
print('The average reconstruction loss on the network is %d' % (loss_sum//counter))
if args.model == 'run-thru':
file = open("log.txt", 'w')
log.append('Accuracy of the network on the 10000 test images: %.4f %%\n' % (100 * correct / total))
log.append('The average reconstruction loss on the network is %d\n' % (loss_sum//counter))
for line in log:
file.write(line)
file.close()
model.to('cpu')
model.eval()
# sample images
with torch.no_grad():
z = torch.randn(64, args.zdim)
sample = model.decoder(z)
save_image(sample.view(64, 1, 28, 28), args.directory)
def loop_thru_lambda(trainset, train_loader, testset, test_loader, device, args):
lambdas = [1, 0.5, 0.2, 0.1, 0.01, 0.001, 0.0001, 1e-5, 1e-6, 0]
for i, lam in enumerate(lambdas):
args.lam = lam
args.fig_name = str(lam) + "_lambda_model.jpg"
args.directory = "samples/" + str(lam) + "-vae.jpg"
model = VAE(args).to(device)
train_vae(model, train_loader, device, args)
test_vae(model, test_loader, device, args)
plt.figure()
for i, lam in enumerate(lambdas):
plt.plot(acc_curves[i], label="Lambda: %f" % lambdas[i])
plt.title("Accuracy")
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.legend(loc="lower right")
plt.savefig("accuracy.jpg")
plt.figure()
for i, lam in enumerate(lambdas):
plt.plot(loss_curves[i], label="Lambda: %f" % lambdas[i])
plt.title("Loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.legend(loc="upper right")
plt.savefig("loss.jpg")
plt.show()
if __name__ == "__main__":
args = config()
device = torch.device("cuda:0" if (torch.cuda.is_available() and args.cuda) else "cpu")
transform = transforms.Compose(
[transforms.ToTensor()])
trainset = datasets.MNIST('./data', train=True, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True)
testset = datasets.MNIST('./data', train=False, transform=transform, download=True)
test_loader = torch.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False)
if args.train:
if args.model == 'vae':
model = VAE(args).to(device)
train_vae(model, train_loader, device, args)
if args.test:
test_vae(model, test_loader, device, args)
model.train()
images, labels = iter(test_loader).next()
images = images.to(device)
labels = labels.to(device)
elif args.model == 'classifier':
model = CNN(args).to(device)
train_classifier(model, train_loader, device, args)
if args.test:
test_cnn(model, test_loader, device, args)
elif args.model == 'run-thru':
loop_thru_lambda(trainset, train_loader, testset, test_loader, device, args)