forked from hysts/pytorch_image_classification
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataloader.py
205 lines (172 loc) · 7.1 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import pathlib
import numpy as np
import torch
import torch.utils.data
import torchvision
import torchvision.models
import torchvision.transforms
import augmentations
import transforms
class Dataset:
def __init__(self, config):
self.config = config
dataset_rootdir = pathlib.Path('~/.torchvision/datasets').expanduser()
if self.config['dataset'] == 'KMNIST':
self.dataset_dir = pathlib.Path('~/data/Kuzushiji/Kuzushiji-MNIST').expanduser()
elif self.config['dataset'] == 'K49':
self.dataset_dir = pathlib.Path('~/data/Kuzushiji/Kuzushiji-49').expanduser()
else:
self.dataset_dir = dataset_rootdir / config['dataset']
self._train_transforms = []
self.train_transform = self._get_train_transform()
self.test_transform = self._get_test_transform()
def get_datasets(self):
if self.config['dataset'] in ['KMNIST', 'K49']:
train_dataset = torchvision.datasets.ImageFolder(
self.dataset_dir / 'train',
transform=self.train_transform)
test_dataset = torchvision.datasets.ImageFolder(
self.dataset_dir / 'test',
transform=self.test_transform)
else:
train_dataset = getattr(torchvision.datasets, self.config['dataset'])(
self.dataset_dir,
train=True,
transform=self.train_transform,
download=True)
test_dataset = getattr(torchvision.datasets, self.config['dataset'])(
self.dataset_dir,
train=False,
transform=self.test_transform,
download=True)
return train_dataset, test_dataset
def _add_random_crop(self):
transform = torchvision.transforms.RandomCrop(
self.size, padding=self.config['random_crop_padding'])
self._train_transforms.append(transform)
def _add_horizontal_flip(self):
self._train_transforms.append(
torchvision.transforms.RandomHorizontalFlip())
def _add_normalization(self):
self._train_transforms.append(
torchvision.transforms.Normalize(self.mean, self.std))
def _add_normalization_custom(self):
self._train_transforms.append(
transforms.Normalize(self.mean, self.std))
def _add_to_tensor(self):
self._train_transforms.append(torchvision.transforms.ToTensor())
def _add_to_tensor_custom(self):
self._train_transforms.append(transforms.ToTensor())
def _add_random_erasing(self):
transform = augmentations.random_erasing.RandomErasing(
self.config['random_erasing_prob'],
self.config['random_erasing_area_ratio_range'],
self.config['random_erasing_min_aspect_ratio'],
self.config['random_erasing_max_attempt'])
self._train_transforms.append(transform)
def _add_cutout(self):
transform = augmentations.cutout.Cutout(self.config['cutout_size'],
self.config['cutout_prob'],
self.config['cutout_inside'])
self._train_transforms.append(transform)
def _add_dual_cutout(self):
transform = augmentations.cutout.DualCutout(
self.config['cutout_size'], self.config['cutout_prob'],
self.config['cutout_inside'])
self._train_transforms.append(transform)
def _add_grayscale(self):
self._train_transforms.append(torchvision.transforms.Grayscale(1))
def _add_np2pil(self):
self._train_transforms.append(transforms.Np2pil())
def _get_train_transform(self):
if self.config['use_random_crop']:
self._add_random_crop()
if self.config['use_horizontal_flip']:
self._add_horizontal_flip()
if self.config['use_random_erasing']:
self._add_random_erasing()
if self.config['use_cutout']:
self._add_cutout()
elif self.config['use_dual_cutout']:
self._add_dual_cutout()
if self.config['dataset'] in ['KMNIST', 'K49']:
self._add_np2pil()
self._add_grayscale()
self._add_to_tensor()
self._add_normalization()
else:
self._add_normalization_custom()
self._add_to_tensor_custom()
return torchvision.transforms.Compose(self._train_transforms)
def _get_test_transform(self):
if self.config['dataset'] in ['KMNIST', 'K49']:
transform = torchvision.transforms.Compose([
torchvision.transforms.Grayscale(1),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(self.mean, self.std)
])
else:
transform = torchvision.transforms.Compose([
transforms.Normalize(self.mean, self.std),
transforms.ToTensor()
])
return transform
class CIFAR(Dataset):
def __init__(self, config):
self.size = 32
if config['dataset'] == 'CIFAR10':
self.mean = np.array([0.4914, 0.4822, 0.4465])
self.std = np.array([0.2470, 0.2435, 0.2616])
elif config['dataset'] == 'CIFAR100':
self.mean = np.array([0.5071, 0.4865, 0.4409])
self.std = np.array([0.2673, 0.2564, 0.2762])
super(CIFAR, self).__init__(config)
class MNIST(Dataset):
def __init__(self, config):
self.size = 28
if config['dataset'] == 'MNIST':
self.mean = np.array([0.1307])
self.std = np.array([0.3081])
elif config['dataset'] == 'FashionMNIST':
self.mean = np.array([0.2860])
self.std = np.array([0.3530])
elif config['dataset'] == 'KMNIST':
self.mean = np.array([0.1904])
self.std = np.array([0.3475])
elif config['dataset'] == 'K49':
self.mean = np.array([0.1904])
self.std = np.array([0.3475])
super(MNIST, self).__init__(config)
def worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
def get_loader(config):
batch_size = config['batch_size']
num_workers = config['num_workers']
use_gpu = config['use_gpu']
dataset_name = config['dataset']
assert dataset_name in [
'CIFAR10', 'CIFAR100', 'MNIST', 'FashionMNIST', 'KMNIST', 'K49'
]
if dataset_name in ['CIFAR10', 'CIFAR100']:
dataset = CIFAR(config)
elif dataset_name in ['MNIST', 'FashionMNIST', 'KMNIST', 'K49']:
dataset = MNIST(config)
train_dataset, test_dataset = dataset.get_datasets()
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=use_gpu,
drop_last=True,
worker_init_fn=worker_init_fn,
)
test_loader = torch.utils.data.DataLoader(
test_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
pin_memory=use_gpu,
drop_last=False,
)
return train_loader, test_loader