-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathmodel.py
75 lines (59 loc) · 3.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from typing import Dict, Optional
import tensorflow as tf
from addressnet.dataset import vocab, n_labels
def model_fn(features: Dict[str, tf.Tensor], labels: tf.Tensor, mode: str, params) -> tf.estimator.EstimatorSpec:
"""
The AddressNet model function suitable for tf.estimator.Estimator
:param features: a dictionary containing tensors for the encoded_text and lengths
:param labels: a label for each character designating its position in the address
:param mode: indicates whether the model is being trained, evaluated or used in prediction mode
:param params: model hyperparameters, including rnn_size and rnn_layers
:return: the appropriate tf.estimator.EstimatorSpec for the model mode
"""
encoded_text, lengths = features['encoded_text'], features['lengths']
rnn_size = params.get("rnn_size", 128)
rnn_layers = params.get("rnn_layers", 3)
embeddings = tf.get_variable("embeddings", dtype=tf.float32, initializer=tf.random_normal(shape=(len(vocab), 8)))
encoded_strings = tf.nn.embedding_lookup(embeddings, encoded_text)
logits, loss = nnet(encoded_strings, lengths, rnn_layers, rnn_size, labels, mode == tf.estimator.ModeKeys.TRAIN)
predicted_classes = tf.argmax(logits, axis=2)
if mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
'class_ids': predicted_classes,
'probabilities': tf.nn.softmax(logits)
}
return tf.estimator.EstimatorSpec(mode, predictions=predictions)
if mode == tf.estimator.ModeKeys.EVAL:
metrics = {}
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=metrics)
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
def nnet(encoded_strings: tf.Tensor, lengths: tf.Tensor, rnn_layers: int, rnn_size: int, labels: tf.Tensor = None,
training: bool = True) -> (tf.Tensor, Optional[tf.Tensor]):
"""
Generates the RNN component of the model
:param encoded_strings: a tensor containing the encoded strings (embedding vectors)
:param lengths: a tensor of string lengths
:param rnn_layers: number of layers to use in the RNN
:param rnn_size: number of units in each layer
:param labels: labels for each character in the string (optional)
:param training: if True, dropout will be enabled on the RNN
:return: logits and loss (loss will be None if labels is not provided)
"""
def rnn_cell():
probs = 0.8 if training else 1.0
return tf.contrib.rnn.DropoutWrapper(tf.contrib.cudnn_rnn.CudnnCompatibleGRUCell(rnn_size),
state_keep_prob=probs, output_keep_prob=probs)
rnn_cell_fw = tf.nn.rnn_cell.MultiRNNCell([rnn_cell() for _ in range(rnn_layers)])
rnn_cell_bw = tf.nn.rnn_cell.MultiRNNCell([rnn_cell() for _ in range(rnn_layers)])
(rnn_output_fw, rnn_output_bw), states = tf.nn.bidirectional_dynamic_rnn(rnn_cell_fw, rnn_cell_bw, encoded_strings,
lengths, dtype=tf.float32)
rnn_output = tf.concat([rnn_output_fw, rnn_output_bw], axis=2)
logits = tf.layers.dense(rnn_output, n_labels, activation=tf.nn.elu)
loss = None
if labels is not None:
mask = tf.sequence_mask(lengths, dtype=tf.float32)
loss = tf.losses.softmax_cross_entropy(labels, logits, weights=mask)
return logits, loss