-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroll.cu
281 lines (247 loc) · 8.29 KB
/
roll.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#include"roll.h"
#include<algorithm>
#include<math.h>
#include<device_launch_parameters.h>
__host__ __forceinline__ void copyData(vector<int>&v, int*& tmp, int len) {
for (int i = 0; i < len; i++)
v[i] = tmp[i];
}
namespace nvinfer1 {
roll::roll(const std::vector<int>& vshift_sizes, const std::vector<int>& vdims,
const std::vector<int>& vstrids, const std::vector<int>& vshapes) {
N = vshift_sizes.size();
sN = vshapes.size();
rshift_sizes = vshift_sizes;
rdims = vdims;
rstrids = vstrids;
rshapes = vshapes;
CUDA_CHECK(cudaMalloc(&shifts, vshift_sizes.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(shifts, vshift_sizes.data(), vshift_sizes.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&dims, vdims.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(dims, vdims.data(), vdims.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&strides, vstrids.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(strides, vstrids.data(), vstrids.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&shapes, vshapes.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(shapes, vshapes.data(), vshapes.size() * sizeof(int), cudaMemcpyHostToDevice));
}
roll::~roll() {
CUDA_CHECK(cudaFree(shifts));
CUDA_CHECK(cudaFree(dims));
CUDA_CHECK(cudaFree(strides));
CUDA_CHECK(cudaFree(shapes));
}
// 反序列化
roll::roll(const void* data, size_t length) {
const char* d = reinterpret_cast<const char*>(data), *a = d;
Tn::read(d, mInputSize);
Tn::read(d, N);
Tn::read(d, sN);
int size = (int)N * sizeof(int);
rshift_sizes.resize(N);
memcpy(rshift_sizes.data(), d, size);
d += size;
rdims.resize(N);
memcpy(rdims.data(), d, size);
std::cout << std::endl;
d += size;
size = (int)sN * sizeof(int);
rstrids.resize(sN);
memcpy(rstrids.data(), d, size);
d += size;
rshapes.resize(sN);
memcpy(rshapes.data(), d, size);
d += size;
CUDA_CHECK(cudaMalloc(&shifts, rshift_sizes.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(shifts, rshift_sizes.data(), rshift_sizes.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&dims, rdims.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(dims, rdims.data(), rdims.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&strides, rstrids.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(strides, rstrids.data(), rstrids.size() * sizeof(int), cudaMemcpyHostToDevice));
CUDA_CHECK(cudaMalloc(&shapes, rshapes.size() * sizeof(int)));
CUDA_CHECK(cudaMemcpy(shapes, rshapes.data(), rshapes.size() * sizeof(int), cudaMemcpyHostToDevice));
assert(d == a + length);
}
// 序列化
void roll::serialize(void* buffer) const {
char* d = static_cast<char*>(buffer), *a = d;
Tn::write(d, mInputSize);
Tn::write(d, N);
Tn::write(d, sN);
int size = rshift_sizes.size() * sizeof(int);
memcpy(d, rshift_sizes.data(), size);
d += size;
size = rdims.size() * sizeof(int);
memcpy(d, rdims.data(), size);
d += size;
size = rstrids.size() * sizeof(int);
memcpy(d, rstrids.data(), size);
d += size;
size = rshapes.size() * sizeof(int);
memcpy(d, rshapes.data(), size);
d += size;
assert(d == a + getSerializationSize());
}
size_t roll::getSerializationSize() const {
return sizeof(mInputSize) + sizeof(N) + sizeof(sN) + rshift_sizes.size() * sizeof(int) +
rdims.size() * sizeof(int)+ rstrids.size() * sizeof(int)+
rshapes.size() * sizeof(int);
}
int roll::initialize() {
return 0;
}
Dims roll::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) {
assert(nbInputDims == 1);
Dims outputDims;
outputDims.nbDims = inputs[0].nbDims;
for (int i = 0; i < inputs[0].nbDims; i++)
{
outputDims.d[i] = inputs[0].d[i];
}
return outputDims;
}
// Set plugin namespace
void roll::setPluginNamespace(const char* pluginNamespace)
{
mPluginNamespace = pluginNamespace;
}
const char* roll::getPluginNamespace() const
{
return mPluginNamespace;
}
// Return the DataType of the plugin output at the requested index
DataType roll::getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const
{
return DataType::kFLOAT;
}
// Return true if output tensor is broadcast across a batch.
bool roll::isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const
{
return false;
}
// Return true if plugin can use input that is broadcast across batch without replication.
bool roll::canBroadcastInputAcrossBatch(int inputIndex) const
{
return false;
}
void roll::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput)
{
mInputSize = 1;
for (int i = 0; i < in[0].dims.nbDims; i++) {
mInputSize *= in[0].dims.d[i];
}
}
// Attach the plugin object to an execution context and grant the plugin the access to some context resource.
void roll::attachToContext(cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator)
{
}
// Detach the plugin object from its execution context.
void roll::detachFromContext() {}
const char* roll::getPluginType() const
{
return "rollLayer_TRT";
}
const char* roll::getPluginVersion() const
{
return "1";
}
void roll::destroy()
{
delete this;
}
// Clone the plugin
IPluginV2IOExt* roll::clone() const
{
roll *p = new roll(rshift_sizes, rdims, rstrids, rshapes);
p->setPluginNamespace(mPluginNamespace);
p->setInputSize(mInputSize);
return p;
}
__global__ void rollKernel(const float *in, float *out, int size,int Ndims,const int* rshift,
const int* rdims,const int* rstrids,const int* rshapes) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= size) return;
int new_dim = 0;
int new_idx = idx;;
#pragma unroll
for (size_t i = 0; i < Ndims; i++)
{
int ind = rdims[i];
new_dim = (idx / rstrids[ind])%rshapes[ind]+rshift[i];
//需要考虑 越界循环
if (new_dim>=rshapes[ind])
new_idx += (rshift[i] - rshapes[ind])*rstrids[ind];
else
new_idx += rshift[i]*rstrids[ind];
}
out[new_idx] = in[idx];
}
void roll::forwardGpu(const float *const * inputs, float * output, cudaStream_t stream, int batchSize) {
int numElem = batchSize * mInputSize;
rollKernel << <(numElem + mThreadCount - 1) / mThreadCount, mThreadCount >> >
(inputs[0], output, numElem, N, (const int*)shifts, (const int*)dims, (const int*)strides, (const int*)shapes);
}
int roll::enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream)
{
forwardGpu((const float *const *)inputs, (float*)outputs[0], stream, batchSize);
return 0;
}
PluginFieldCollection rollCreator::mFC{};
std::vector<PluginField> rollCreator::mPluginAttributes;
rollCreator::rollCreator()
{
mPluginAttributes.clear();
mFC.nbFields = mPluginAttributes.size();
mFC.fields = mPluginAttributes.data();
}
const char* rollCreator::getPluginName() const
{
return "rollLayer_TRT";
}
const char* rollCreator::getPluginVersion() const
{
return "1";
}
const PluginFieldCollection* rollCreator::getFieldNames()
{
return &mFC;
}
IPluginV2IOExt* rollCreator::createPlugin(const char* name, const PluginFieldCollection* fc)
{
const PluginField* fields = fc->fields;
std::vector<int> vshift_sizes, vdims,
vstrids, vshapes;
for (int i = 0; i < fc->nbFields; i++)
{
int* tmp = (int*)(fields[i].data);
if (strcmp(fields[i].name, "shift_sizes") == 0) {
for (int j = 0; j < fields[i].length; j++)
vshift_sizes.push_back(tmp[j]);
}
else if (strcmp(fields[i].name, "dims") == 0) {
for (int j = 0; j < fields[i].length; j++) {
vdims.push_back(tmp[j]);
}
}
else if (strcmp(fields[i].name, "strids") == 0) {
for (int j = 0; j < fields[i].length; j++)
vstrids.push_back(tmp[j]);
}
else {
for (int j = 0; j < fields[i].length; j++)
vshapes.push_back(tmp[j]);
}
}
assert(vshift_sizes.size() > 0);
assert(vshift_sizes.size() == vdims.size());
roll* obj = new roll(vshift_sizes, vdims, vstrids, vshapes);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
IPluginV2IOExt* rollCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength)
{
// This object will be deleted when the network is destroyed, which will
roll* obj = new roll(serialData, serialLength);
obj->setPluginNamespace(mNamespace.c_str());
return obj;
}
};