-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathSnakefile
897 lines (786 loc) · 30.6 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
"""Top-level ``snakemake`` file that runs pipeline."""
import os
import textwrap
import pandas as pd
import yaml
configfile: "config.yaml"
with open(config["docs_plot_annotations"]) as f:
docs_plot_annotations = yaml.safe_load(f)
# paths with results subdirectory for key tracked output files
results_files = [
"synonymous_mut_rates/rates_by_clade.csv",
"mutation_counts/aggregated.csv",
"expected_vs_actual_mut_counts/expected_vs_actual_mut_counts.csv",
"clade_founder_nts/clade_founder_nts.csv",
"clade_founder_nts/clade_founder_aas.csv",
"aa_fitness/aamut_fitness_all.csv",
"aa_fitness/aamut_fitness_by_clade.csv",
"aa_fitness/aamut_fitness_by_subset.csv",
"aa_fitness/aa_fitness.csv",
"aa_fitness/aa_fitness.json",
"aa_fitness/aa_fitness.json.gz",
"nt_fitness/ntmut_fitness_all.csv",
"nt_fitness/ntmut_fitness_by_clade.csv",
"nt_fitness/ntmut_fitness_by_subset.csv",
"nt_fitness/nt_fitness.csv",
"nt_fitness/synonymous_constraint_figure.pdf",
"comparator_studies/comparator_corr.html",
"dms-viz/mut_fitness.json",
*[f"dms/{dms_dataset}/processed.csv" for dms_dataset in config["dms_datasets"]],
]
rule all:
"""Target rule with desired output files."""
input:
expand(
[os.path.join("results_{mat}", f) for f in results_files],
mat=config["mat_trees"],
),
expand(
[os.path.join("results", f) for f in results_files],
mat=config["mat_trees"],
),
expand(
"docs/{mat}/{plot}.html",
plot=list(docs_plot_annotations["plots"]) + ["index"],
mat=config["mat_trees"],
),
expand(
"docs/{plot}.html",
plot=list(docs_plot_annotations["plots"]) + ["index"],
mat=config["mat_trees"],
),
rule get_mat_tree:
"""Get the pre-built mutation-annotated tree."""
params:
url=lambda wc: config["mat_trees"][wc.mat],
output:
mat="results_{mat}/mat/mat_tree.pb.gz",
shell:
"curl {params.url} > {output.mat}"
rule get_ref_fasta:
"""Get the reference FASTA."""
params:
url=config["ref_fasta"],
output:
ref_fasta="results_{mat}/ref/ref.fa",
shell:
"wget -O - {params.url} | gunzip -c > {output.ref_fasta}"
rule get_ref_gtf:
"""Get the reference GTF."""
params:
url=config["ref_gtf"],
output:
ref_gtf="results_{mat}/ref/original_ref.gtf",
shell:
"wget -O - {params.url} | gunzip -c > {output.ref_gtf}"
rule edit_ref_gtf:
"""Edit the reference GTF with manual additions."""
input:
gtf=rules.get_ref_gtf.output.ref_gtf,
output:
gtf="results_{mat}/ref/edited_ref.gtf",
params:
edits=config["add_to_ref_gtf"],
notebook:
"notebooks/edit_ref_gtf.py.ipynb"
rule ref_coding_sites:
"""Get all sites in reference that are part of a coding sequence."""
input:
gtf=rules.edit_ref_gtf.output.gtf,
fasta=rules.get_ref_fasta.output.ref_fasta,
output:
csv="results_{mat}/ref/coding_sites.csv",
script:
"scripts/ref_coding_sites.py"
checkpoint mat_samples:
"""Get all samples in mutation-annotated tree with their dates and clades."""
input:
mat=rules.get_mat_tree.output.mat,
output:
csv="results_{mat}/mat/samples.csv",
clade_counts="results_{mat}/mat/sample_clade_counts.csv",
params:
min_clade_samples=config["min_clade_samples"],
script:
"scripts/mat_samples.py"
def clades_w_adequate_counts(wc):
"""Return list of all clades with adequate sample counts."""
return [
clade
for clade in (
pd.read_csv(checkpoints.mat_samples.get(**wc).output.clade_counts)
.query("adequate_sample_counts")["nextstrain_clade"]
.tolist()
)
if clade not in config["clades_to_exclude"]
]
rule samples_by_clade_subset:
"""Get samples in mutation-annotated tree by nextstrain clade and subset."""
input:
csv=rules.mat_samples.output.csv,
output:
txt="results_{mat}/mat_by_clade_subset/{clade}_{subset}.txt",
params:
match_regex=lambda wc: config["sample_subsets"][wc.subset],
run:
(
pd.read_csv(input.csv)
.query("nextstrain_clade == @wildcards.clade")
.query(f"sample.str.match('{params.match_regex}')")["sample"]
.to_csv(output.txt, index=False, header=False)
)
rule mat_clade_subset:
"""Get mutation-annotated tree for just a clade and subset."""
input:
mat=rules.get_mat_tree.output.mat,
samples=rules.samples_by_clade_subset.output.txt,
output:
mat="results_{mat}/mat_by_clade_subset/{clade}_{subset}.pb",
shell:
"""
if [ -s {input.samples} ]; then
echo "Extracting samples from {input.samples}"
matUtils extract -i {input.mat} -s {input.samples} -O -o {output.mat}
else
echo "No samples in {input.samples}"
touch {output.mat}
fi
"""
rule translate_mat:
"""Translate mutations on mutation-annotated tree for clade."""
input:
mat=rules.mat_clade_subset.output.mat,
ref_fasta=rules.get_ref_fasta.output.ref_fasta,
ref_gtf=rules.edit_ref_gtf.output.gtf,
output:
tsv="results_{mat}/mat_by_clade_subset/{clade}_{subset}_mutations.tsv",
shell:
"""
matUtils summary \
-i {input.mat} \
-g {input.ref_gtf} \
-f {input.ref_fasta} \
-t {output.tsv}
"""
rule mat_sample_path:
"""Get sample paths on MAT for clade. Use for nucleotide mutations."""
# for explanation of why we need this rule in addition to `translate_mat`:
# https://github.com/yatisht/usher/issues/336#issuecomment-1490764515
input:
mat=rules.mat_clade_subset.output.mat,
output:
tsv=temp("results_{mat}/mat_by_clade_subset/{clade}_{subset}_sample_paths.tsv"),
shell:
"matUtils extract -i {input.mat} --sample-paths {output.tsv}"
rule sample_path_to_nt_mutations:
"""Get all nucleotide mutations on tree from sample paths."""
# for explanation of why we need this rule in addition to `translate_mat`:
# https://github.com/yatisht/usher/issues/336#issuecomment-1490764515
input:
tsv=rules.mat_sample_path.output.tsv,
output:
csv="results_{mat}/mat_by_clade_subset/{clade}_{subset}_nt_mutations.csv",
script:
"scripts/sample_path_to_nt_mutations.py"
rule clade_founder_jsons:
"""Get JSONs with nexstrain clade founders (indels not included)."""
params:
**config["clade_founders"],
output:
neher_json="results_{mat}/clade_founders_no_indels/clade_founders_neher.json",
roemer_json="results_{mat}/clade_founders_no_indels/clade_founders_roemer.json",
shell:
"""
curl {params.neher_json} > {output.neher_json}
curl {params.roemer_json} > {output.roemer_json}
"""
rule clade_founder_fasta_and_muts:
"""Get FASTA and mutations for nextstrain clade founder (indels not included)."""
input:
neher_json=rules.clade_founder_jsons.output.neher_json,
roemer_json=rules.clade_founder_jsons.output.roemer_json,
ref_fasta=rules.get_ref_fasta.output.ref_fasta,
params:
roemer_nextstrain_to_pango=config["roemer_nextstrain_to_pango"],
output:
fasta="results_{mat}/clade_founders_no_indels/{clade}.fa",
muts="results_{mat}/clade_founders_no_indels/{clade}_ref_to_founder_muts.csv",
script:
"scripts/clade_founder_fasta.py"
rule site_mask_vcf:
"""Get the site mask VCF."""
output:
vcf="results_{mat}/site_mask/site_mask.vcf",
params:
url=config["site_mask_vcf"],
shell:
"curl {params.url} > {output.vcf}"
rule site_mask:
"""Convert site mask VCF to CSV."""
input:
vcf=rules.site_mask_vcf.output.vcf,
output:
csv="results_{mat}/site_mask/site_mask.csv",
script:
"scripts/site_mask.py"
rule count_mutations:
"""Count mutations, excluding branches with too many mutations or reversions."""
input:
tsv=rules.translate_mat.output.tsv,
nt_mut_csv=rules.sample_path_to_nt_mutations.output.csv,
ref_fasta=rules.get_ref_fasta.output.ref_fasta,
clade_founder_fasta=rules.clade_founder_fasta_and_muts.output.fasta,
ref_to_founder_muts=rules.clade_founder_fasta_and_muts.output.muts,
usher_masked_sites=config["usher_masked_sites"],
site_mask=rules.site_mask.output.csv,
output:
csv="results_{mat}/mutation_counts/{clade}_{subset}.csv",
params:
max_nt_mutations=config["max_nt_mutations"],
max_reversions_to_ref=config["max_reversions_to_ref"],
max_reversions_to_clade_founder=config["max_reversions_to_clade_founder"],
exclude_ref_to_founder_muts=config["exclude_ref_to_founder_muts"],
sites_to_exclude=config["sites_to_exclude"],
site_include_range=config["site_include_range"],
log:
notebook="results_{mat}/mutation_counts/{clade}_{subset}_count_mutations.ipynb",
notebook:
"notebooks/count_mutations.py.ipynb"
rule clade_founder_nts:
"""Get nucleotide at each coding site for clade founders."""
input:
coding_sites=rules.ref_coding_sites.output.csv,
fastas=lambda wc: [
f"results_{wc.mat}/clade_founders_no_indels/{clade}.fa"
for clade in clades_w_adequate_counts(wc)
],
output:
csv="results_{mat}/clade_founder_nts/clade_founder_nts.csv",
script:
"scripts/clade_founder_nts.py"
rule aggregate_mutation_counts:
"""Aggregate the mutation counts for all clades and subsets."""
input:
clade_founder_nts=rules.clade_founder_nts.output.csv,
counts=lambda wc: [
f"results_{wc.mat}/mutation_counts/{clade}_{subset}.csv"
for clade in clades_w_adequate_counts(wc)
for subset in config["sample_subsets"]
],
output:
csv="results_{mat}/mutation_counts/aggregated.csv",
script:
"scripts/aggregate_mutation_counts.py"
rule synonymous_mut_rates:
"""Compute and analyze rates and spectra of synonymous mutations."""
input:
mutation_counts_csv=rules.aggregate_mutation_counts.output.csv,
clade_founder_nts_csv=rules.clade_founder_nts.output.csv,
output:
rates_by_clade="results_{mat}/synonymous_mut_rates/rates_by_clade.csv",
rates_plot="results_{mat}/synonymous_mut_rates/mut_rates.html",
params:
synonymous_spectra_min_counts=config["synonymous_spectra_min_counts"],
sample_subsets=config["sample_subsets"],
clade_synonyms=config["clade_synonyms"],
log:
notebook="results_{mat}/synonymous_mut_rates/synonymous_mut_rates.ipynb",
notebook:
"notebooks/synonymous_mut_rates.ipynb"
rule expected_mut_counts:
"""Compute expected mutation counts from synonymous mutation rates and counts."""
input:
rates_by_clade=rules.synonymous_mut_rates.output.rates_by_clade,
clade_founder_nts_csv=rules.clade_founder_nts.output.csv,
output:
expected_counts="results_{mat}/expected_mut_counts/expected_mut_counts.csv",
log:
notebook="results_{mat}/expected_mut_counts/expected_mut_counts.ipynb",
notebook:
"notebooks/expected_mut_counts.ipynb"
rule aggregate_mutations_to_exclude:
"""Aggregate the set of all mutations to exclude for each clade."""
input:
muts_to_exclude=lambda wc: [
f"results_{wc.mat}/clade_founders_no_indels/{clade}_ref_to_founder_muts.csv"
for clade in clades_w_adequate_counts(wc)
],
usher_masked_sites=config["usher_masked_sites"],
site_mask=rules.site_mask.output.csv,
ref_fasta=rules.get_ref_fasta.output.ref_fasta,
output:
csv="results_{mat}/expected_vs_actual_mut_counts/mutations_to_exclude.csv",
params:
clades=lambda wc: clades_w_adequate_counts(wc),
sites_to_exclude=config["sites_to_exclude"],
site_include_range=config["site_include_range"],
exclude_ref_to_founder_muts=config["exclude_ref_to_founder_muts"],
script:
"scripts/aggregate_mutations_to_exclude.py"
rule merge_expected_and_actual_counts:
"""Merge expected and actual counts."""
input:
expected=rules.expected_mut_counts.output.expected_counts,
actual=rules.aggregate_mutation_counts.output.csv,
muts_to_exclude=rules.aggregate_mutations_to_exclude.output.csv,
output:
csv="results_{mat}/expected_vs_actual_mut_counts/expected_vs_actual_mut_counts.csv",
log:
notebook="results_{mat}/expected_vs_actual_mut_counts/merge_expected_and_actual_counts.ipynb",
notebook:
"notebooks/merge_expected_and_actual_counts.py.ipynb"
rule summarize_expected_vs_actual:
"""Summarize expected vs actual across mutations."""
input:
csv=rules.merge_expected_and_actual_counts.output.csv,
output:
chart="results_{mat}/expected_vs_actual_mut_counts/avg_counts.html",
log:
notebook="results_{mat}/expected_vs_actual_mut_counts/summarize_expected_vs_actual.ipynb",
notebook:
"notebooks/summarize_expected_vs_actual.py.ipynb"
rule aamut_fitness:
"""Fitness effects from expected vs actual counts for amino-acid mutations."""
input:
csv=rules.merge_expected_and_actual_counts.output.csv,
output:
aamut_all="results_{mat}/aa_fitness/aamut_fitness_all.csv",
aamut_by_clade="results_{mat}/aa_fitness/aamut_fitness_by_clade.csv",
aamut_by_subset="results_{mat}/aa_fitness/aamut_fitness_by_subset.csv",
params:
orf1ab_to_nsps=config["orf1ab_to_nsps"],
fitness_pseudocount=config["fitness_pseudocount"],
gene_overlaps=config["gene_overlaps"],
log:
notebook="results_{mat}/aa_fitness/aamut_fitness.ipynb",
notebook:
"notebooks/aamut_fitness.py.ipynb"
rule ntmut_fitness:
"""Fitness effects from expected vs actual counts for nucleotide mutations."""
input:
csv=rules.merge_expected_and_actual_counts.output.csv,
output:
ntmut_all="results_{mat}/nt_fitness/ntmut_fitness_all.csv",
ntmut_by_clade="results_{mat}/nt_fitness/ntmut_fitness_by_clade.csv",
ntmut_by_subset="results_{mat}/nt_fitness/ntmut_fitness_by_subset.csv",
params:
fitness_pseudocount=config["fitness_pseudocount"],
log:
notebook="results_{mat}/nt_fitness/ntmut_fitness.ipynb",
notebook:
"notebooks/ntmut_fitness.py.ipynb"
rule aa_fitness:
"""Fitnesses of different amino acids across clades."""
input:
aamut_fitness=rules.aamut_fitness.output.aamut_all,
output:
aa_fitness="results_{mat}/aa_fitness/aa_fitness.csv",
log:
notebook="results_{mat}/aa_fitness/aa_fitness.ipynb",
notebook:
"notebooks/aa_fitness.py.ipynb"
rule nt_fitness:
"""Fitnesses of different nucleotides across clades."""
input:
ntmut_fitness=rules.ntmut_fitness.output.ntmut_all,
output:
nt_fitness="results_{mat}/nt_fitness/nt_fitness.csv",
log:
notebook="results_{mat}/nt_fitness/nt_fitness.ipynb",
notebook:
"notebooks/nt_fitness.py.ipynb"
rule clade_founder_aas:
"""Get clade-founder amino acids."""
input:
clade_founder_nts=rules.clade_founder_nts.output.csv,
params:
orf1ab_to_nsps=config["orf1ab_to_nsps"],
clade_synonyms=config["clade_synonyms"],
output:
clade_founder_aas="results_{mat}/clade_founder_nts/clade_founder_aas.csv",
notebook:
"notebooks/clade_founder_aas.py.ipynb"
rule analyze_aa_fitness:
"""Analyze and plot amino-acid mutation fitnesses."""
input:
aamut_all=rules.aamut_fitness.output.aamut_all,
aamut_by_subset=rules.aamut_fitness.output.aamut_by_subset,
aamut_by_clade=rules.aamut_fitness.output.aamut_by_clade,
aafitness=rules.aa_fitness.output.aa_fitness,
clade_founder_nts=rules.clade_founder_nts.output.csv,
ref_coding_sites=rules.ref_coding_sites.output.csv,
params:
min_expected_count=config["min_expected_count"],
clade_corr_min_count=config["clade_corr_min_count"],
init_ref_clade=config["aa_fitness_init_ref_clade"],
clade_synonyms=config["clade_synonyms"],
heatmap_minimal_domain=config["aa_fitness_heatmap_minimal_domain"],
orf1ab_to_nsps=config["orf1ab_to_nsps"],
output:
outdir=directory("results_{mat}/aa_fitness/plots"),
log:
notebook="results_{mat}/aa_fitness/analyze_aa_fitness.ipynb",
notebook:
"notebooks/analyze_aa_fitness.py.ipynb"
rule get_dms_dataset:
"""Get a deep mutational scanning dataset."""
params:
url=lambda wc: config["dms_datasets"][wc.dms_dataset]["url"],
output:
raw_data="results_{mat}/dms/{dms_dataset}/raw.csv",
shell:
"curl {params.url} > {output.raw_data}"
rule process_dms_dataset:
"""Process a deep mutational scanning dataset to fitness estimates."""
input:
unpack(
lambda wc: (
{"wt_seq": config["dms_datasets"][wc.dms_dataset]["wt_seq"]}
if "wt_seq" in config["dms_datasets"][wc.dms_dataset]
else {}
)
),
raw_data=rules.get_dms_dataset.output.raw_data,
output:
processed="results_{mat}/dms/{dms_dataset}/processed.csv",
log:
notebook="results_{mat}/dms/{dms_dataset}/process_{dms_dataset}.ipynb",
notebook:
"notebooks/process_{wildcards.dms_dataset}.ipynb"
rule fitness_dms_corr:
"""Correlate the fitness estimates with those from deep mutational scanning."""
input:
**{
dms_dataset: os.path.join(
"results_{mat}", "dms", dms_dataset, "processed.csv"
)
for dms_dataset in config["dms_datasets"]
},
aafitness=rules.aa_fitness.output.aa_fitness,
neher_fitness=config["neher_fitness"],
output:
plotsdir=directory("results_{mat}/fitness_dms_corr/plots"),
params:
min_expected_count=config["min_expected_count"],
dms_datasets=config["dms_datasets"],
log:
notebook="results_{mat}/fitness_dms_corr/fitness_dms_corr.ipynb",
notebook:
"notebooks/fitness_dms_corr.py.ipynb"
rule clade_fixed_muts:
"""Analyze mutations fixed in each clade."""
input:
aafitness=rules.aa_fitness.output.aa_fitness,
aamut_by_clade=rules.aamut_fitness.output.aamut_by_clade,
clade_founder_nts_csv=rules.clade_founder_nts.output.csv,
output:
fixed_muts_chart="results_{mat}/clade_fixed_muts/clade_fixed_muts.html",
fixed_muts_hist="results_{mat}/clade_fixed_muts/clade_fixed_muts_hist.html",
params:
min_expected_count=config["min_expected_count"],
ref=config["clade_fixed_muts_ref"],
orf1ab_to_nsps=config["orf1ab_to_nsps"],
log:
notebook="results_{mat}/clade_fixed_muts/clade_fixed_muts.ipynb",
notebook:
"notebooks/clade_fixed_muts.py.ipynb"
rule fitness_vs_terminal:
"""Analyze fitness effects of mutations vs terminal / non-terminal node counts."""
input:
aamut_all=rules.aamut_fitness.output.aamut_all,
output:
chart="results_{mat}/fitness_vs_terminal/fitness_vs_terminal.html",
params:
min_expected_count=config["min_expected_count"],
min_actual_count=config["terminal_min_actual_count"],
pseudocount=config["terminal_pseudocount"],
log:
notebook="results_{mat}/fitness_vs_terminal/fitness_vs_terminal.ipynb",
notebook:
"notebooks/fitness_vs_terminal.py.ipynb"
rule synonymous_figures:
"""Plot of synonymous selection."""
input:
fitness=rules.ntmut_fitness.output.ntmut_all,
output:
synonymous_figure="results_{mat}/nt_fitness/synonymous_constraint_figure.pdf",
params:
min_expected_count=config["min_expected_count"],
shell:
"""
python scripts/noncoding_constraints.py \
--fitness {input.fitness} \
--output {output.synonymous_figure} \
--min_expected_count {params.min_expected_count}
"""
rule correlate_mats:
"""Correlate mutation effects for different MATs (sequence sets)."""
input:
aa_fitnesses=expand(rules.aa_fitness.output.aa_fitness, mat=config["mat_trees"]),
output:
fitness_corrs_chart="results_{mat}/mat_corrs/mat_aa_fitness_correlations.html",
params:
mats=list(config["mat_trees"]),
min_expected_count=config["min_expected_count"],
log:
notebook="results_{mat}/mat_corrs/correlate_mats.ipynb",
notebook:
"notebooks/correlate_mats.py.ipynb"
rule get_dnds_data:
"""Get data for dN/dS analysis."""
params:
url=config["dnds"],
output:
csv="results_{mat}/dnds/dnds_data.csv",
shell:
"curl {params.url} > {output.csv}"
rule analyze_dnds:
"""Analyze dN/dS versus amino-acid fitness and DMS data."""
input:
**{
dms_dataset: os.path.join(
"results_{mat}", "dms", dms_dataset, "processed.csv"
)
for dms_dataset in config["dms_datasets"]
},
dnds=rules.get_dnds_data.output.csv,
aa_fitness=rules.aa_fitness.output.aa_fitness,
output:
corr_html="results_{mat}/dnds/dnds_corr.html",
params:
min_expected_count=config["min_expected_count"],
dms_datasets=config["dms_datasets"],
log:
notebook="results_{mat}/dnds/analyze_dnds.ipynb",
notebook:
"notebooks/analyze_dnds.py.ipynb"
rule analyze_comparator_studies:
"""Analyze comparator studies versus fitness estimates and DMS data."""
input:
**{
study: f"data/comparator_studies/{study}.csv"
for study in config["comparator_studies"]
},
**{
dms_dataset: os.path.join(
"results_{mat}", "dms", dms_dataset, "processed.csv"
)
for dms_dataset in config["dms_datasets"]
},
aa_fitness=rules.aa_fitness.output.aa_fitness,
output:
corr_html="results_{mat}/comparator_studies/comparator_corr.html",
params:
min_expected_count=config["min_expected_count"],
dms_datasets=config["dms_datasets"],
comparator_studies=config["comparator_studies"],
log:
notebook="results_{mat}/comparator_studies/analyze_comparator_studies.ipynb",
notebook:
"notebooks/analyze_comparator_studies.py.ipynb"
rule aggregate_plots_for_docs:
"""Aggregate plots to include in GitHub pages docs."""
input:
aa_fitness_plots_dir=rules.analyze_aa_fitness.output.outdir,
dms_corr_plotsdir=rules.fitness_dms_corr.output.plotsdir,
rates_plot=rules.synonymous_mut_rates.output.rates_plot,
clade_fixed_muts=rules.clade_fixed_muts.output.fixed_muts_chart,
clade_fixed_hist=rules.clade_fixed_muts.output.fixed_muts_hist,
fitness_vs_terminal=rules.fitness_vs_terminal.output.chart,
avg_counts=rules.summarize_expected_vs_actual.output.chart,
mat_corrs=rules.correlate_mats.output.fitness_corrs_chart,
dnds_corr=rules.analyze_dnds.output.corr_html,
comparator_corr=rules.analyze_comparator_studies.output.corr_html,
output:
expand(
"results_{{mat}}/plots_for_docs/{plot}.html",
plot=docs_plot_annotations["plots"],
),
params:
plotsdir="results_{mat}/plots_for_docs",
shell:
"""
mkdir -p {params.plotsdir}
rm -f {params.plotsdir}/*
cp {input.aa_fitness_plots_dir}/*.html {params.plotsdir}
cp {input.dms_corr_plotsdir}/*.html {params.plotsdir}
cp {input.rates_plot} {params.plotsdir}
cp {input.clade_fixed_muts} {params.plotsdir}
cp {input.clade_fixed_hist} {params.plotsdir}
cp {input.fitness_vs_terminal} {params.plotsdir}
cp {input.avg_counts} {params.plotsdir}
cp {input.mat_corrs} {params.plotsdir}
cp {input.dnds_corr} {params.plotsdir}
cp {input.comparator_corr} {params.plotsdir}
"""
rule format_plot_for_docs:
"""Format a specific plot for the GitHub pages docs."""
input:
plot=os.path.join(rules.aggregate_plots_for_docs.params.plotsdir, "{plot}.html"),
script="scripts/format_altair_html.py",
output:
plot="docs/{mat}/{plot}.html",
markdown=temp("results_{mat}/plots_for_docs/{plot}.md"),
params:
annotations=lambda wc: docs_plot_annotations["plots"][wc.plot],
url=config["docs_url"],
legend_suffix=docs_plot_annotations["legend_suffix"],
shell:
"""
echo "## {params.annotations[title]}\n" > {output.markdown}
echo "{params.annotations[legend]}\n\n" >> {output.markdown}
echo "{params.legend_suffix}" >> {output.markdown}
echo "\nThis plot is for the {wildcards.mat} dataset." >> {output.markdown}
echo "[Here](index.html) are all plots for that dataset." >> {output.markdown}
python {input.script} \
--chart {input.plot} \
--markdown {output.markdown} \
--site {params.url} \
--title "{params.annotations[title]}" \
--description "{params.annotations[title]}" \
--output {output.plot}
"""
rule docs_index:
"""Write index for GitHub Pages docs for each MAT."""
output:
html="docs/{mat}/index.html",
params:
plot_annotations=docs_plot_annotations,
mat_trees=list(config["mat_trees"]),
script:
"scripts/docs_index.py"
rule current_docs_index:
"""Write index for GitHub Pages docs for current MAT."""
output:
html="docs/index.html",
params:
plot_annotations=docs_plot_annotations,
mat_trees=list(config["mat_trees"]),
current_mat=config["current_mat"],
script:
"scripts/docs_index.py"
rule cp_current_mat_results:
"""Copy the current MAT results to `./results/`."""
input:
[os.path.join(f"results_{config['current_mat']}", f) for f in results_files],
output:
[os.path.join("results", f) for f in results_files],
subdir=directory("results"),
params:
input_subdir=f"results_{config['current_mat']}",
shell:
"""
rm -rf {output.subdir}
cp -r {params.input_subdir} {output.subdir}
"""
rule cp_current_mat_docs:
"""Copy the current MAT docs to `./docs/` for default GitHub pages display."""
input:
expand(
os.path.join("docs", config["current_mat"], "{plot}.html"),
plot=list(docs_plot_annotations["plots"]),
),
output:
expand(
os.path.join("docs", "{plot}.html"),
plot=list(docs_plot_annotations["plots"]),
),
shell:
"cp {input} docs"
rule export_fitness_to_json:
"""Export amino-acid fitness to JSON with metadata"""
input:
aa_fitness=rules.aa_fitness.output.aa_fitness,
clade_founder_aas=rules.clade_founder_aas.output.clade_founder_aas,
output:
aa_fitness_json="results_{mat}/aa_fitness/aa_fitness.json",
aa_fitness_json_gz="results_{mat}/aa_fitness/aa_fitness.json.gz",
params:
min_expected_count=config["min_expected_count"],
citation=config["citation"],
authors=config["authors"],
source=config["source"],
description=config["description"],
script:
"scripts/export_fitness_to_json.py"
# Format the data for each protein
rule format_fitness_for_dms_viz:
input:
aa_fitness=rules.aa_fitness.output.aa_fitness,
clade_founder_aas=rules.clade_founder_aas.output.clade_founder_aas,
structure_info="data/proteins.csv",
output:
fitness_df="results_{mat}/dms-viz/{protein}/{protein}_fitness.csv",
sitemap_df="results_{mat}/dms-viz/{protein}/{protein}_sitemap.csv",
script:
"scripts/format-data-for-dms-viz.py"
# Create JSON files for each protein
rule create_dms_viz_json:
input:
fitness_df=("results_{mat}/dms-viz/{protein}/{protein}_fitness.csv"),
sitemap_df=("results_{mat}/dms-viz/{protein}/{protein}_sitemap.csv"),
output:
os.path.join("results_{mat}/dms-viz/", "{protein}", "{protein}.json"),
params:
name=lambda wildcards: wildcards.protein,
structure=lambda wildcards: proteins.loc[
proteins["selection"] == wildcards.protein, "pdb"
].item(),
include_chains=lambda wildcards: proteins.loc[
proteins["selection"] == wildcards.protein, "dataChains"
].item(),
exclude_chains=lambda wildcards: proteins.loc[
proteins["selection"] == wildcards.protein, "excludedChains"
].item(),
description=lambda wildcards: proteins.loc[
proteins["selection"] == wildcards.protein, "description"
].item(),
title=lambda wildcards: proteins.loc[
proteins["selection"] == wildcards.protein, "title"
].item(),
filter_cols={"expected_count": "Expected Count"},
filter_limits={"expected_count": [0, 100]},
tooltip_cols={"expected_count": "Expected Count"},
metric="fitness",
metric_name="Fitness",
conda: "envs/configure-dms-viz.yml"
shell:
"""
configure-dms-viz \
--input {input.fitness_df} \
--name "{params.name}" \
--sitemap {input.sitemap_df} \
--metric {params.metric} \
--structure {params.structure} \
--metric-name {params.metric_name} \
--output {output} \
--alphabet "RKHDEQNSTYWFAILMVGPC*" \
--included-chains "{params.include_chains}" \
--excluded-chains "{params.exclude_chains}" \
--filter-cols "{params.filter_cols}" \
--filter-limits "{params.filter_limits}" \
--tooltip-cols "{params.tooltip_cols}" \
--exclude-amino-acids "*" \
--description "{params.description}" \
--title "{params.title}"
"""
# Combine JSON files into one
proteins = pd.read_csv("data/proteins.csv")
rule combine_dms_viz_jsons:
input:
input_files=lambda wildcards: [
os.path.join(
f"results_{wildcards.mat}/dms-viz/", protein, f"{protein}.json"
)
for protein in proteins.selection.unique()
],
output:
output_file="results_{mat}/dms-viz/mut_fitness.json",
run:
combined_data = {}
for input_file in input.input_files:
with open(input_file) as f:
data = json.load(f)
combined_data.update(data)
with open(output.output_file, "w") as f:
json.dump(combined_data, f)