forked from yanghb22-fdu/Hi3D-Official
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ddp_spawn.py
467 lines (420 loc) · 16.7 KB
/
train_ddp_spawn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import argparse, os, sys, datetime, glob, importlib, csv
import numpy as np
import time
import torch
import torchvision
import pytorch_lightning as pl
import random
from packaging import version
from omegaconf import OmegaConf
from PIL import Image
from webdataset import WebDataset
from torchvision.utils import make_grid
from einops import rearrange
from pytorch_lightning import seed_everything
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.utilities import rank_zero_info
# from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
# from pytorch_lightning.strategies import DDPFullyShardedNativeStrategy
from sgm.util import instantiate_from_config
from vtdm.logger import setup_logger
from vtdm.callbacks import TextProgressBar
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=False,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"-p",
"--project",
help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"-o",
"--outckpt",
type=str,
default="",
help="path for output ckpt",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="/mnt/drive2/3d/OUTPUTS/new-logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
type=str2bool,
nargs="?",
const=True,
default=True,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
return parser
def nondefault_trainer_args(opt):
parser = argparse.ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args([])
return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
# native_fsdp = DDPFullyShardedNativeStrategy(
# cpu_offload = CPUOffload(offload_params=True)
# )
if __name__ == "__main__":
torch.set_float32_matmul_precision('high')
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
sys.path.append(os.getcwd())
parser = get_parser()
# add the default args from pytorch_lightning Trainer
parser = Trainer.add_argparse_args(parser)
if "RANK" in os.environ:
node_rank = int(os.environ.get('RANK'))
else:
node_rank = int(os.environ.get('LOCAL_RANK', 0))
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
logdir = "/".join(paths[:-2])
ckpt = opt.resume
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
name = "_" + cfg_name
else:
name = ""
nowname = nowname = now + name + opt.postfix + '_' + str(node_rank).zfill(2)
logdir = os.path.join(opt.logdir, nowname)
# setup trainer loggers
os.makedirs(logdir, exist_ok=True)
# local_rank = int(os.environ.get('LOCAL_RANK', 0))
pl_logger = setup_logger(output=logdir, distributed_rank=node_rank, name='VTDM')
# copy codes
if node_rank == 0:
codedir = os.path.join(logdir, "code")
copy_folders = ['dataset', 'sgm', 'vtdm']
import shutil
for folder in copy_folders:
shutil.copytree(folder, os.path.join(codedir, folder))
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
node_seed = int(str(opt.seed) + str(node_rank).zfill(2))
seed_everything(node_seed)
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to ddp
trainer_config["accelerator"] = "ddp"
for k in nondefault_trainer_args(opt):
trainer_config[k] = getattr(opt, k)
if not "gpus" in trainer_config:
del trainer_config["accelerator"]
cpu = True
else:
gpuinfo = trainer_config["gpus"]
pl_logger.info(f"Running on GPUs {gpuinfo}")
cpu = False
os.environ["GPU_PER_NODE"] = str(len(gpuinfo.split(',')))
if "strategy" in trainer_config:
trainer_config['accelerator'] = "cuda"
pl_logger.info("Use the strategy of {}".format(trainer_config['strategy']))
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
pl_logger.info(f"Pytorch lightning trainer config: \n{trainer_config}")
# model init
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
default_logger_cfgs = {
"wandb": {
"target": "pytorch_lightning.loggers.WandbLogger",
"params": {
"name": nowname,
"save_dir": logdir,
"offline": opt.debug,
"id": nowname,
}
},
"tensorBoardLog": {
"target": "pytorch_lightning.loggers.TensorBoardLogger",
"params": {
"name": "tensorBoardLog",
"save_dir": logdir,
}
},
}
default_logger_cfg = default_logger_cfgs["tensorBoardLog"]
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
# specify which metric is used to determine best models
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:06}",
"verbose": True,
'save_weights_only': True
}
}
if hasattr(model, "monitor"):
pl_logger.info(f"Monitoring {model.monitor} as checkpoint metric.")
default_modelckpt_cfg["params"]["monitor"] = model.monitor
default_modelckpt_cfg["params"]["save_top_k"] = 10
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
pl_logger.info(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
if version.parse(pl.__version__) < version.parse('1.4.0'):
trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "vtdm.callbacks.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
}
},
"learning_rate_logger": {
"target": "train_ddp_spawn.LearningRateMonitor",
"params": {
"logging_interval": "step",
}
},
"cuda_callback": {
"target": "vtdm.callbacks.CUDACallback"
},
}
if version.parse(pl.__version__) >= version.parse('1.4.0'):
default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
#pl_logger.info(
# 'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
default_metrics_over_trainsteps_ckpt_dict = {
'metrics_over_trainsteps_checkpoint':
{"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
'params': {
"dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
"filename": "{epoch:06}-{step:09}",
"verbose": True,
'save_top_k': -1,
'every_n_train_steps': 10000,
'save_weights_only': True
}
}
}
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'):
callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint
elif 'ignore_keys_callback' in callbacks_cfg:
del callbacks_cfg['ignore_keys_callback']
textbar_callbacks = TextProgressBar(pl_logger, trainer_config['logger_refresh_rate'])
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
trainer_kwargs["callbacks"].append(textbar_callbacks)
if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
pl_logger.info(f"Merged trainsteps-cfg: \n{callbacks_cfg['metrics_over_trainsteps_checkpoint']}")
pl_logger.info('Done in building trainer kwargs.')
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
data.setup()
pl_logger.info("Set up dataset.")
# for k in data.datasets:
# if isinstance(data.datasets[k], WebDataset):
# pl_logger.info(f"{k}, {data.datasets[k].__class__.__name__}: No accurate account for WebDataset.")
# else:
# pl_logger.info(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
# configure learning rate
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
if not cpu:
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
else:
ngpu = 1
if 'accumulate_grad_batches' in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
pl_logger.info(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if opt.scale_lr:
if "WORLD_SIZE" in os.environ:
world_size = int(os.environ["WORLD_SIZE"]) # * int(os.environ["GPU_PER_NODE"])
else:
world_size = ngpu
model.learning_rate = world_size * accumulate_grad_batches * bs * base_lr
pl_logger.info(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, world_size, bs, base_lr))
else:
model.learning_rate = base_lr
pl_logger.info("++++ NOT USING LR SCALING ++++")
pl_logger.info(f"Setting learning rate to {model.learning_rate:.2e}")
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0 and opt.outckpt != '':
pl_logger.info("Final checkpoint to " + opt.outckpt)
torch.save(model.state_dict(), opt.outckpt)
elif trainer.global_rank == 0:
pl_logger.info(" Summoning checkpoint (melk).")
ckpt_path = os.path.join(ckptdir, "last.ckpt")
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb;
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# run
if opt.train:
try:
trainer.fit(model, data)
if trainer.global_rank == 0 and opt.outckpt != '':
pl_logger.info("Final checkpoint to " + opt.outckpt)
torch.save(model.state_dict(), opt.outckpt)
except Exception:
melk()
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except Exception:
if opt.debug and trainer.global_rank == 0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank == 0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
if trainer.global_rank == 0:
pl_logger.info(trainer.profiler.summary())