-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_pretrain.py
140 lines (115 loc) · 5.45 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import math
import sys
from typing import Iterable, Union
import torch
import numpy as np
import wandb
import util.misc as misc
import cv2
import util.lr_sched as lr_sched
# import matplotlib.pyplot as plt
imagenet_mean = np.array([0.485, 0.456, 0.406])
imagenet_std = np.array([0.229, 0.224, 0.225])
def denormalize(image):
# image is [H, W, 3]
assert image.shape[2] == 3
return np.clip((image * imagenet_std + imagenet_mean) * 255, 0, 255).astype(np.uint8)
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable,
val_loader: Union[Iterable, None],
optimizer: torch.optim.Optimizer,
device: torch.device,
epoch: int,
loss_scaler,
log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
# Take one sample from the data loader randomly
# examples, _, = next(iter(data_loader))
for data_iter_step, (image1, image2, _) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
# # No plotting with norm_pix_loss
# if data_iter_step % 500 == 0:
# if misc.get_rank() == 0:
# with torch.no_grad():
# # run MAE
# images = torch.clone(samples[:args.num_imgs_to_log]).to(device)
# loss, predictions, mask = model(images.float(), mask_ratio=args.mask_ratio)
# try:
# predictions = model.module.unpatchify(predictions)
# except:
# predictions = model.unpatchify(predictions)
# predictions = torch.einsum('nchw->nhwc', predictions).detach().cpu()
# # visualize the mask
# mask = mask.detach()
# try:
# mask = (
# mask
# .unsqueeze(-1)
# .repeat(1, 1, model.module.patch_embed.patch_size[0]**2 *3)
# ) # (N, H*W, p*p*3)
# mask = model.module.unpatchify(mask) # 1 is removing, 0 is keeping
# except:
# mask = (
# mask
# .unsqueeze(-1)
# .repeat(1, 1, model.patch_embed.patch_size[0]**2 *3)
# ) # (N, H*W, p*p*3)
# mask = model.unpatchify(mask) # 1 is removing, 0 is keeping
# mask = torch.einsum('nchw->nhwc', mask).detach().cpu()
# images = torch.einsum('nchw->nhwc', images).detach().cpu()
# # masked image
# im_masked = images * (1 - mask)
# # MAE reconstruction pasted with visible patches
# im_paste = images * (1 - mask) + predictions * mask
# images_to_plot = []
# for i in range(args.num_imgs_to_log):
# grid = torch.cat([images[i], im_masked[i], predictions[i], im_paste[i]], dim=1)
# images_to_plot.append(
# wandb.Image(denormalize(grid.numpy()))
# )
# wandb.log({'images': images_to_plot})
# del images, predictions, mask, im_masked, im_paste, grid, images_to_plot
# samples = samples.to(device, non_blocking=True)
with torch.cuda.amp.autocast():
loss, _, _ = model([image1, image2])
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
dataset_size = len(data_loader)
epoch_1000x = int((data_iter_step / dataset_size + epoch) * 1000)
dict_to_log = {
'train_loss': loss_value_reduce,
'lr': lr,
}
log_writer.log(
dict_to_log,
step=epoch_1000x,
)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}