-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
96 lines (78 loc) · 4.03 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from typing import Callable, Iterable, Tuple
import math
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
# State should be stored in this dictionary
state = self.state[p]
# Access hyperparameters from the `group` dictionary
alpha = group["lr"]
# Complete the implementation of AdamW here, reading and saving
# your state in the `state` dictionary above.
#
# The hyperparameters can be read from the `group` dictionary
# (they are lr, betas, eps, weight_decay, as saved in the constructor).
#
# 1- Update first and second moments of the gradients
# 2- Apply bias correction
# (using the "efficient version" given in https://arxiv.org/abs/1412.6980;
# also given in the pseudo-code in the project description).
# 3- Update parameters (p.data).
# 4- After that main gradient-based update, update again using weight decay
# (incorporating the learning rate again).
# extract hyperparameters from group object
beta_1, beta_2 = group["betas"][0], group["betas"][1]
weight_decay = group["weight_decay"]
eps = group["eps"]
# initialize or access state variables
m = torch.zeros_like(p.data, memory_format=torch.preserve_format) if 'm' not in state else state['m']
v = torch.zeros_like(p.data, memory_format=torch.preserve_format) if 'v' not in state else state['v']
t = 0 if 't' not in state else state['t']
# increment t
t += 1
# update first and second moments of gradient
m = beta_1 * m + (1-beta_1) * grad
v = beta_2 * v + (1-beta_2) * grad**2
# update parameters (p.data)
if group["correct_bias"]: # apply bias correction and update
alpha_t = alpha * math.sqrt(1 - beta_2**t) / (1 - beta_1**t) # optimized version
denominator = torch.sqrt(v).add(eps)
p.data.addcdiv_(m, denominator, value=-alpha_t)
else: # update without bias correction
denominator = torch.sqrt(v).add(eps)
p.data.addcdiv_(m, denominator, value=-alpha)
# apply weight decay to gradient
p.data -= weight_decay * alpha * p.data
# update state
state['t'], state['m'], state['v'] = t, m, v
return loss