forked from anniesch/jtt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_expt.py
executable file
·321 lines (280 loc) · 11.9 KB
/
run_expt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os, csv
import argparse
import pandas as pd
import torch
import torch.nn as nn
import torchvision
from tqdm import tqdm
import numpy as np
import wandb
from copy import deepcopy
from models import model_attributes
from data.data import dataset_attributes, shift_types, prepare_data, log_data
from data import dro_dataset
from data import folds
from utils import set_seed, Logger, CSVBatchLogger, log_args, get_model, hinge_loss
from train import train
from data.folds import Subset, ConcatDataset
def main(args):
if args.wandb:
wandb.init(project=f"{args.project_name}_{args.dataset}")
wandb.config.update(args)
# BERT-specific configs copied over from run_glue.py
if (args.model.startswith("bert") and args.use_bert_params):
args.max_grad_norm = 1.0
args.adam_epsilon = 1e-8
args.warmup_steps = 0
if os.path.exists(args.log_dir) and args.resume:
resume = True
mode = "a"
else:
resume = False
mode = "w"
## Initialize logs
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
logger = Logger(os.path.join(args.log_dir, "log.txt"), mode)
# Record args
log_args(args, logger)
set_seed(args.seed)
# Data
# Test data for label_shift_step is not implemented yet
test_data = None
test_loader = None
if args.shift_type == "confounder":
train_data, val_data, test_data = prepare_data(
args,
train=True,
)
elif args.shift_type == "label_shift_step":
raise NotImplementedError
train_data, val_data = prepare_data(args, train=True)
#########################################################################
###################### Prepare data for our method ######################
#########################################################################
# Should probably not be upweighting if folds are specified.
assert not args.fold or not args.up_weight
# Fold passed. Use it as train and valid.
if args.fold:
train_data, val_data = folds.get_fold(
train_data,
args.fold,
cross_validation_ratio=(1 / args.num_folds_per_sweep),
num_valid_per_point=args.num_sweeps,
seed=args.seed,
)
if args.up_weight != 0:
assert args.aug_col is not None
# Get points that should be upsampled
metadata_df = pd.read_csv(args.metadata_path)
if args.dataset == "jigsaw":
train_col = metadata_df[metadata_df["split"] == "train"]
else:
train_col = metadata_df[metadata_df["split"] == 0]
aug_indices = np.where(train_col[args.aug_col] == 1)[0]
print("len", len(train_col), len(aug_indices))
if args.up_weight == -1:
up_weight_factor = int(
(len(train_col) - len(aug_indices)) / len(aug_indices)) - 1
else:
up_weight_factor = args.up_weight
print(f"Up-weight factor: {up_weight_factor}")
upsampled_points = Subset(train_data,
list(aug_indices) * up_weight_factor)
# Convert to DRODataset
train_data = dro_dataset.DRODataset(
ConcatDataset([train_data, upsampled_points]),
process_item_fn=None,
n_groups=train_data.n_groups,
n_classes=train_data.n_classes,
group_str_fn=train_data.group_str,
)
elif args.aug_col is not None:
print("\n"*2 + "WARNING: aug_col is not being used." + "\n"*2)
#########################################################################
#########################################################################
#########################################################################
loader_kwargs = {
"batch_size": args.batch_size,
"num_workers": 4,
"pin_memory": True,
}
train_loader = dro_dataset.get_loader(train_data,
train=True,
reweight_groups=args.reweight_groups,
**loader_kwargs)
val_loader = dro_dataset.get_loader(val_data,
train=False,
reweight_groups=None,
**loader_kwargs)
if test_data is not None:
test_loader = dro_dataset.get_loader(test_data,
train=False,
reweight_groups=None,
**loader_kwargs)
data = {}
data["train_loader"] = train_loader
data["val_loader"] = val_loader
data["test_loader"] = test_loader
data["train_data"] = train_data
data["val_data"] = val_data
data["test_data"] = test_data
n_classes = train_data.n_classes
log_data(data, logger)
## Initialize model
model = get_model(
model=args.model,
pretrained=not args.train_from_scratch,
resume=resume,
n_classes=train_data.n_classes,
dataset=args.dataset,
log_dir=args.log_dir,
)
if args.wandb:
wandb.watch(model)
logger.flush()
## Define the objective
if args.hinge:
assert args.dataset in ["CelebA", "CUB"] # Only supports binary
criterion = hinge_loss
else:
criterion = torch.nn.CrossEntropyLoss(reduction="none")
if resume:
raise NotImplementedError # Check this implementation.
df = pd.read_csv(os.path.join(args.log_dir, "test.csv"))
epoch_offset = df.loc[len(df) - 1, "epoch"] + 1
logger.write(f"starting from epoch {epoch_offset}")
else:
epoch_offset = 0
train_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, f"train.csv"),
train_data.n_groups,
mode=mode)
val_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, f"val.csv"),
val_data.n_groups,
mode=mode)
test_csv_logger = CSVBatchLogger(os.path.join(args.log_dir, f"test.csv"),
test_data.n_groups,
mode=mode)
train(
model,
criterion,
data,
logger,
train_csv_logger,
val_csv_logger,
test_csv_logger,
args,
epoch_offset=epoch_offset,
csv_name=args.fold,
wandb=wandb if args.wandb else None,
)
train_csv_logger.close()
val_csv_logger.close()
test_csv_logger.close()
def check_args(args):
if args.shift_type == "confounder":
assert args.confounder_names
assert args.target_name
elif args.shift_type.startswith("label_shift"):
assert args.minority_fraction
assert args.imbalance_ratio
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Settings
parser.add_argument("-d",
"--dataset",
choices=dataset_attributes.keys(),
required=True)
parser.add_argument("-s",
"--shift_type",
choices=shift_types,
required=True)
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--project_name", type=str, default="spurious", help="wandb project name")
# Confounders
parser.add_argument("-t", "--target_name")
parser.add_argument("-c", "--confounder_names", nargs="+")
parser.add_argument("--up_weight", type=int, default=0)
# Resume?
parser.add_argument("--resume", default=False, action="store_true")
# Label shifts
parser.add_argument("--minority_fraction", type=float)
parser.add_argument("--imbalance_ratio", type=float)
# Data
parser.add_argument("--fraction", type=float, default=1.0)
parser.add_argument("--root_dir", default=None)
parser.add_argument("--reweight_groups", action="store_true",
default=False,
help="set to True if loss_type is group DRO")
parser.add_argument("--augment_data", action="store_true", default=False)
parser.add_argument("--val_fraction", type=float, default=0.1)
# Objective
parser.add_argument("--loss_type", default="erm",
choices=["erm", "group_dro", "joint_dro"])
parser.add_argument("--alpha", type=float, default=0.2)
parser.add_argument("--generalization_adjustment", default="0.0")
parser.add_argument("--automatic_adjustment",
default=False,
action="store_true")
parser.add_argument("--robust_step_size", default=0.01, type=float)
parser.add_argument("--joint_dro_alpha", default=1, type=float,
help=("Size param for CVaR joint DRO."
" Only used if loss_type is joint_dro"))
parser.add_argument("--use_normalized_loss",
default=False,
action="store_true")
parser.add_argument("--btl", default=False, action="store_true")
parser.add_argument("--hinge", default=False, action="store_true")
# Model
parser.add_argument("--model",
choices=model_attributes.keys(),
default="resnet50")
parser.add_argument("--train_from_scratch",
action="store_true",
default=False)
# Optimization
parser.add_argument("--n_epochs", type=int, default=4)
parser.add_argument("--batch_size", type=int, default=32)
parser.add_argument("--lr", type=float, default=0.001)
parser.add_argument("--scheduler", action="store_true", default=False)
parser.add_argument("--weight_decay", type=float, default=0.0001)
parser.add_argument("--gamma", type=float, default=0.1)
parser.add_argument("--minimum_variational_weight", type=float, default=0)
# Misc
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--show_progress", default=False, action="store_true")
parser.add_argument("--log_dir", default="./logs")
parser.add_argument("--log_every", default=50, type=int)
parser.add_argument("--save_step", type=int, default=10)
parser.add_argument("--save_best", action="store_true", default=False)
parser.add_argument("--save_last", action="store_true", default=False)
parser.add_argument("--use_bert_params", type=int, default=1)
parser.add_argument("--num_folds_per_sweep", type=int, default=5)
parser.add_argument("--num_sweeps", type=int, default=4)
parser.add_argument("--q", type=float, default=0.7)
parser.add_argument(
"--metadata_csv_name",
type=str,
default="metadata.csv",
help="name of the csv data file (dataset csv has to be placed in dataset folder).",
)
parser.add_argument("--fold", default=None)
# Our groups (upweighting/dro_ours)
parser.add_argument(
"--metadata_path",
default=None,
help="path to metadata csv",
)
parser.add_argument("--aug_col", default=None)
args = parser.parse_args()
if args.model.startswith("bert"): # and args.model != "bert":
if args.use_bert_params:
print("\n"*5, f"Using bert params", "\n"*5)
else:
print("\n"*5, f"WARNING, Using {args.model} without using BERT HYPER-PARAMS", "\n"*5)
check_args(args)
if args.metadata_csv_name != "metadata.csv":
print("\n" * 2
+ f"WARNING: You are using '{args.metadata_csv_name}' instead of the default 'metadata.csv'."
+ "\n" * 2)
main(args)