-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess.py
110 lines (88 loc) · 3.58 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 1 11:01:12 2019
@author: nsde
"""
#%%
import glob
import cv2, os, re
import numpy as np
from tqdm import tqdm
from sklearn.cluster import KMeans, MiniBatchKMeans
import matplotlib.pyplot as plt
from joblib import Parallel, delayed
class args:
n_features = 10
n_files = 100 # set to 7202 for all files
use_online = True
def get_features(f):
# Read image and extract label from filename
img = cv2.imread(f)
label = f.split('/')[2]
# We use AKAZE since SIFT has moved to a external library,
# that is a pain to install
# We could also use something like HOG descriptor
alg = cv2.KAZE_create()
alg.setThreshold(1e-3)
# Detech keypoints
kps = alg.detect(img)
if len(kps)>0:
# Extract descriptors at each keypoint
_, dsc = alg.compute(img, kps)
return label, dsc
if __name__ == '__main__':
img_dsc = [ ]
labels = [ ]
#d = 'coil-100' # download from http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
files = glob.glob('data/asl_alphabet_train/*/*.jpg')
print('Extraction descriptors')
results=Parallel(n_jobs=30, prefer='threads')(delayed(get_features)(f) for f in tqdm(files))
labels, img_dsc = zip(*[result for result in results if result is not None])
# Number of images
N = len(labels)
# Do train/test split (10% for test)
idx = np.random.permutation(N)
idx_train = idx[:int(N*9/10)]
idx_test = idx[int(N*9/10):]
dsc_train = [img_dsc[i] for i in idx_train]
dsc_test = [img_dsc[i] for i in idx_test]
labels_train = [labels[i] for i in idx_train]
labels_test = [labels[i] for i in idx_test]
# Kmeans on training set to find cluster centers
# NOTE: You may want to set the use_online argument to true, as the
# standard kmeans algorithm may take a very long time
print('Fitting Kmeans')
cluster_alg = MiniBatchKMeans(n_clusters = args.n_features, verbose=True) if args.use_online \
else KMeans(n_clusters = args.n_features)
cluster_alg.fit(np.concatenate(dsc_train))
cluster_alg.verbose = False
# Build histograms, by for each image calculate how many descriptors
# that are close to each cluster center
print('Building histograms')
X_train = np.zeros((len(idx_train), args.n_features))
X_test = np.zeros((len(idx_test), args.n_features))
for i, dsc in enumerate(dsc_train):
cluster_idx = cluster_alg.predict(dsc_train[i])
X_train[i] = np.bincount(cluster_idx, minlength=args.n_features)
for i, dsc in enumerate(dsc_test):
cluster_idx = cluster_alg.predict(dsc_test[i])
X_test[i] = np.bincount(cluster_idx, minlength=args.n_features)
# Normalize so we actually have histograms
X_train = X_train / X_train.sum(axis=1, keepdims=True)
X_test = X_test / X_test.sum(axis=1, keepdims=True)
y_train = np.array(labels_train)
y_test = np.array(labels_test)
# Save res, can be loaded using np.load
np.savez('my_histograms_' + str(args.n_features),
X_train = X_train,
X_test = X_test,
y_train = y_train,
y_test = y_test)
# Plot histogram from different classes
# fig, ax = plt.subplots(5, 2)
# for i, rand_idx in enumerate(np.random.choice(int(N*9/10), size=5)):
# ax[i, 0].imshow(cv2.imread(d + '/' + files[idx[rand_idx]]))
# ax[i, 0].axis('off')
# ax[i, 1].bar(np.arange(args.n_features), X_train[rand_idx])
# plt.show()