-
-
Notifications
You must be signed in to change notification settings - Fork 824
/
Copy pathxtts_demo.py
348 lines (300 loc) · 11.7 KB
/
xtts_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import argparse
import os
import sys
import tempfile
import gradio as gr
import librosa.display
import numpy as np
import os
import torch
import torchaudio
import traceback
from TTS.demos.xtts_ft_demo.utils.formatter import format_audio_list
from TTS.demos.xtts_ft_demo.utils.gpt_train import train_gpt
from TTS.demos.xtts_ft_demo.utils.cfg import TTSMODEL_DIR
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
def clear_gpu_cache():
# clear the GPU cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
XTTS_MODEL = None
def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
global XTTS_MODEL
clear_gpu_cache()
if not xtts_checkpoint or not xtts_config or not xtts_vocab:
return "You need to run the previous steps or manually set the `XTTS checkpoint path`, `XTTS config path`, and `XTTS vocab path` fields !!"
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
print("Loading XTTS model! ")
XTTS_MODEL.load_checkpoint(config, checkpoint_path=xtts_checkpoint, vocab_path=xtts_vocab, use_deepspeed=False)
if torch.cuda.is_available():
XTTS_MODEL.cuda()
print("Model Loaded!")
return "Model Loaded!"
def run_tts(lang, tts_text, speaker_audio_file):
if XTTS_MODEL is None or not speaker_audio_file:
return "You need to run the previous step to load the model !!", None, None
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=XTTS_MODEL.config.gpt_cond_len, max_ref_length=XTTS_MODEL.config.max_ref_len, sound_norm_refs=XTTS_MODEL.config.sound_norm_refs)
out = XTTS_MODEL.inference(
text=tts_text,
language=lang,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=XTTS_MODEL.config.temperature, # Add custom parameters here
length_penalty=XTTS_MODEL.config.length_penalty,
repetition_penalty=XTTS_MODEL.config.repetition_penalty,
top_k=XTTS_MODEL.config.top_k,
top_p=XTTS_MODEL.config.top_p,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
out["wav"] = torch.tensor(out["wav"]).unsqueeze(0)
out_path = fp.name
torchaudio.save(out_path, out["wav"], 24000)
return "Speech generated !", out_path, speaker_audio_file
# define a logger to redirect
class Logger:
def __init__(self, filename="log.out"):
self.log_file = filename
self.terminal = sys.stdout
self.log = open(self.log_file, "w")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
self.terminal.flush()
self.log.flush()
def isatty(self):
return False
# redirect stdout and stderr to a file
sys.stdout = Logger()
sys.stderr = sys.stdout
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
import logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.StreamHandler(sys.stdout)
]
)
def read_logs():
sys.stdout.flush()
with open(sys.stdout.log_file, "r") as f:
return f.read()
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""XTTS fine-tuning demo\n\n"""
"""
Example runs:
set http_proxy=http://127.0.0.1:10809
python TTS/demos/xtts_ft_demo/xtts_demo.py --port
""",
formatter_class=argparse.RawTextHelpFormatter,
)
parser.add_argument(
"--port",
type=int,
help="Port to run the gradio demo. Default: 5003",
default=5003,
)
parser.add_argument(
"--out_path",
type=str,
help="Output path (where data and checkpoints will be saved) Default: /tmp/xtts_ft/",
default=TTSMODEL_DIR,
)
parser.add_argument(
"--num_epochs",
type=int,
help="Number of epochs to train. Default: 10",
default=10,
)
parser.add_argument(
"--batch_size",
type=int,
help="Batch size. Default: 4",
default=4,
)
parser.add_argument(
"--grad_acumm",
type=int,
help="Grad accumulation steps. Default: 1",
default=1,
)
parser.add_argument(
"--max_audio_length",
type=int,
help="Max permitted audio size in seconds. Default: 11",
default=10,
)
args = parser.parse_args()
with gr.Blocks() as demo:
with gr.Tab("开始训练"):
model_name = gr.Textbox(
label="保存模型名(只允许英文/数字/下S划线):",
value="",
)
upload_file = gr.File(
file_count="multiple",
label="选择训练素材音频文件,仅包含同一个人声,无背景噪声(wav, mp3, and flac)",
)
with gr.Row() as r1:
lang = gr.Dropdown(
label="音频发声语言",
value="zh",
choices=[
"zh",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"hu",
"ko",
"ja"
],
)
progress_data = gr.Label(
label="进度:"
)
logs = gr.Textbox(
label="日志:",
interactive=False,
)
demo.load(read_logs, None, logs, every=1)
prompt_compute_btn = gr.Button(value="开始训练")
def train_model(language, train_csv, eval_csv, num_epochs, batch_size, grad_acumm, output_path, max_audio_length):
clear_gpu_cache()
if not train_csv or not eval_csv:
return "不存在有效的csv文件 !", "", "", "", ""
try:
# convert seconds to waveform frames
max_audio_length = int(max_audio_length * 22050)
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, grad_acumm, train_csv, eval_csv, output_path=output_path, max_audio_length=max_audio_length)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"训练出错了: {error}", "", "", "", ""
# copy original files to avoid parameters changes issues
os.system(f"cp {config_path} {exp_path}")
os.system(f"cp {vocab_file} {exp_path}")
ft_xtts_checkpoint = os.path.join(exp_path, "model.pth")
print("训练完毕!")
clear_gpu_cache()
return "训练完毕!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
def preprocess_dataset(audio_path, language, progress=gr.Progress(track_tqdm=True)):
clear_gpu_cache()
out_path = os.path.join(args.out_path, "dataset")
os.makedirs(out_path, exist_ok=True)
try:
train_meta, eval_meta, audio_total_size = format_audio_list(audio_path, target_language=language, out_path=out_path, gradio_progress=progress)
except:
traceback.print_exc()
error = traceback.format_exc()
return f"处理训练数据出错了! \n Error summary: {error}", "", "","",""
clear_gpu_cache()
# if audio total len is less than 2 minutes raise an error
if audio_total_size < 120:
message = "素材总时长不得小于2分钟!"
print(message)
return message, "", "","",""
print("数据处理完毕,开始训练!")
msg, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav=train_model(language, train_meta, eval_meta, args.num_epochs, args.batch_size, args.grad_acumm, args.out_path, args.max_audio_length)
progress_data, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio
msg=load_model(
ft_xtts_checkpoint,
config_path,
vocab_file
)
return msg, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
with gr.Tab("使用已训练好的模型"):
with gr.Row():
with gr.Column() as col1:
xtts_checkpoint = gr.Textbox(
label="XTTS checkpoint path:",
value="",
)
xtts_config = gr.Textbox(
label="XTTS config path:",
value="",
)
xtts_vocab = gr.Textbox(
label="XTTS vocab path:",
value="",
)
progress_load = gr.Label(
label="进度:"
)
load_btn = gr.Button(value="Step 3 - Load Fine-tuned XTTS model")
with gr.Column() as col2:
speaker_reference_audio = gr.Textbox(
label="参考音频:",
value="",
)
tts_language = gr.Dropdown(
label="Language",
value="zh",
choices=[
"zh",
"en",
"es",
"fr",
"de",
"it",
"pt",
"pl",
"tr",
"ru",
"nl",
"cs",
"ar",
"hu",
"ko",
"ja",
]
)
tts_text = gr.Textbox(
label="输入要合成的文字.",
value="你好啊,亲爱的朋友.",
)
tts_btn = gr.Button(value="生成声音")
with gr.Column() as col3:
progress_gen = gr.Label(
label="进度:"
)
tts_output_audio = gr.Audio(label="生成的声音.")
reference_audio = gr.Audio(label="参考音频.")
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang
],
outputs=[
progress_data, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio
],
)
tts_btn.click(
fn=run_tts,
inputs=[
tts_language,
tts_text,
speaker_reference_audio,
],
outputs=[progress_gen, tts_output_audio, reference_audio],
)
demo.launch(
share=True,
debug=False,
server_port=args.port,
server_name="0.0.0.0"
)