forked from PaddlePaddle/awesome-DeepLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
162 lines (128 loc) · 5.5 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import numpy as np
import time
import collections
import paddle
import paddle.distributed as dist
from data.operators import *
from data import COCODataSet, BaseDataLoader
from models import PiecewiseDecay, LearningRate, OptimizerBuilder
from models import ComposeCallback, LogPrinter, Checkpointer
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({avg:.4f})"
self.deque = collections.deque(maxlen=window_size)
self.fmt = fmt
self.total = 0.
self.count = 0
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
return np.median(self.deque)
@property
def avg(self):
return np.mean(self.deque)
@property
def max(self):
return np.max(self.deque)
@property
def value(self):
return self.deque[-1]
@property
def global_avg(self):
return self.total / self.count
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, max=self.max, value=self.value)
class TrainingStats(object):
def __init__(self, window_size, delimiter=' '):
self.meters = None
self.window_size = window_size
self.delimiter = delimiter
def update(self, stats):
if self.meters is None:
self.meters = {
k: SmoothedValue(self.window_size)
for k in stats.keys()
}
for k, v in self.meters.items():
v.update(stats[k].numpy())
def get(self, extras=None):
stats = collections.OrderedDict()
if extras:
for k, v in extras.items():
stats[k] = v
for k, v in self.meters.items():
stats[k] = format(v.median, '.6f')
return stats
def log(self, extras=None):
d = self.get(extras)
strs = []
for k, v in d.items():
strs.append("{}: {}".format(k, str(v)))
return self.delimiter.join(strs)
def train(model, start_epoch, epoch,dataset_dir,image_dir,anno_path):
status = {}
batch_size = 16
_nranks = dist.get_world_size()
_local_rank = dist.get_rank()
# 读取训练集
dataset = COCODataSet(dataset_dir=dataset_dir, image_dir=image_dir,anno_path=anno_path,data_fields=['image', 'gt_bbox', 'gt_class', 'is_crowd'])
sample_transforms = [{Decode: {}}, {RandomFlip: {'prob': 0.5}}, {RandomSelect: {'transforms1': [{RandomShortSideResize: {'short_side_sizes': [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], 'max_size': 1333}}], 'transforms2': [{RandomShortSideResize: {'short_side_sizes': [400, 500, 600]}}, {RandomSizeCrop: {'min_size': 384, 'max_size': 600}}, {RandomShortSideResize: {'short_side_sizes': [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800], 'max_size': 1333}}]}}, {NormalizeImage: {'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]}}, {NormalizeBox: {}}, {BboxXYXY2XYWH: {}}, {Permute: {}}]
batch_transforms = [{PadMaskBatch: {'pad_to_stride': -1, 'return_pad_mask': True}}]
loader = BaseDataLoader(sample_transforms, batch_transforms, batch_size=2, shuffle=True, drop_last=True,collate_batch=False, use_shared_memory=False)(
dataset, 0)
# build optimizer in train mode
steps_per_epoch = len(loader)
# 设置学习率、优化器
schedulers = PiecewiseDecay(gamma=0.1,milestones=[400],use_warmup=False)
lr_ = LearningRate(base_lr=0.0001, schedulers=schedulers)
optimizer_ = OptimizerBuilder(clip_grad_by_norm=0.1, regularizer=False, optimizers={'type': 'AdamW', 'weight_decay': 0.0001})
lr = lr_(steps_per_epoch)
optimizers = optimizer_(lr,model.parameters())
# initial default callbacks
_callbacks = [LogPrinter(model,batch_size), Checkpointer(model,optimizers)]
_compose_callback = ComposeCallback(_callbacks)
if _nranks > 1:
model = paddle.DataParallel(model, find_unused_parameters=False)
status.update({
'epoch_id': start_epoch,
'step_id': 0,
'steps_per_epoch': len(loader)
})
status['batch_time'] = SmoothedValue(20, fmt='{avg:.4f}')
status['data_time'] = SmoothedValue(20, fmt='{avg:.4f}')
status['training_staus'] = TrainingStats(20)
for epoch_id in range(start_epoch, epoch):
status['mode'] = 'train'
status['epoch_id'] = epoch_id
_compose_callback.on_epoch_begin(status)
loader.dataset.set_epoch(epoch_id)
model.train()
iter_tic = time.time()
for step_id, data in enumerate(loader):
status['data_time'].update(time.time() - iter_tic)
status['step_id'] = step_id
_compose_callback.on_step_begin(status)
# model forward
outputs = model(data)
loss = outputs['loss']
# model backward
loss.backward()
optimizers.step()
curr_lr = optimizers.get_lr()
lr.step()
optimizers.clear_grad()
status['learning_rate'] = curr_lr
if _nranks < 2 or _local_rank == 0:
status['training_staus'].update(outputs)
status['batch_time'].update(time.time() - iter_tic)
_compose_callback.on_step_end(status)
iter_tic = time.time()
_compose_callback.on_epoch_end(status)