Skip to content

Latest commit

 

History

History

finetune

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Fine-tune pre-trained model in PyTorch

By using our code, we reproduce the results of three popular fine-grained benchmarks.(i.e., Bird, Aircrafts and Cars) We will keep updating the results of this page.

Our experiments are running on

  • PyTorch 0.4 or above
  • 2 x 1080Ti
  • Cuda 9.0 with CuDNN 7.0

Change log

2019/01/22

Add Compact bilinear pooling method (CBP.py).

Update the results of CBP.

2019/11/18

Update the results of fast-MPN-COV-VGG-D. (finetune_mpncovvggd16.sh)

Results (top-1 accuracy rates, %)

All the reproduced results use neither bounding boxes nor part annotations, and the SVM classifier is not performed.m

MPN-COV (ours)

Backbone model Dim. Birds Aircrafts Cars
paper reproduce paper reproduce paper reproduce
VGG-D 32K 87.2 87.0 90.0 91.7 92.5 93.2
ResNet-50 32K 88.1 88.0 90.0 90.3 92.8 92.3
ResNet-101 32K 88.7 TODO 91.4 TODO 93.3 TODO

Bilinear CNN

Backbone model Dim. Birds Aircrafts Cars
paper reproduce paper reproduce paper reproduce
VGG-D 262K 84.0 84.0 86.9 86.9 90.6 90.5

Compact bilinear pooling

Backbone model Dim. Birds Aircrafts Cars
paper reproduce paper reproduce paper reproduce
VGG-D 8K 84.0 83.8 - TODO - TODO

Global average pooling

Backbone model Dimension Birds Aircrafts Cars
ResNet-152 2K TODO
ResNet-101 2K
ResNet-50 2K
DenseNet 1K
Inception-v3 2K
VGG-D 4K
AlexNet 4K