By using our code, we reproduce the results of three popular fine-grained benchmarks.(i.e., Bird, Aircrafts and Cars) We will keep updating the results of this page.
- PyTorch 0.4 or above
- 2 x 1080Ti
- Cuda 9.0 with CuDNN 7.0
2019/01/22
Add Compact bilinear pooling method (
CBP.py
).Update the results of CBP.
2019/11/18
Update the results of fast-MPN-COV-VGG-D. (
finetune_mpncovvggd16.sh
)
All the reproduced results use neither bounding boxes nor part annotations, and the SVM classifier is not performed.m
Backbone model | Dim. | Birds | Aircrafts | Cars | |||
---|---|---|---|---|---|---|---|
paper | reproduce | paper | reproduce | paper | reproduce | ||
VGG-D | 32K | 87.2 | 87.0 | 90.0 | 91.7 | 92.5 | 93.2 |
ResNet-50 | 32K | 88.1 | 88.0 | 90.0 | 90.3 | 92.8 | 92.3 |
ResNet-101 | 32K | 88.7 | TODO | 91.4 | TODO | 93.3 | TODO |
Backbone model | Dim. | Birds | Aircrafts | Cars | |||
---|---|---|---|---|---|---|---|
paper | reproduce | paper | reproduce | paper | reproduce | ||
VGG-D | 262K | 84.0 | 84.0 | 86.9 | 86.9 | 90.6 | 90.5 |
Backbone model | Dim. | Birds | Aircrafts | Cars | |||
---|---|---|---|---|---|---|---|
paper | reproduce | paper | reproduce | paper | reproduce | ||
VGG-D | 8K | 84.0 | 83.8 | - | TODO | - | TODO |
Backbone model | Dimension | Birds | Aircrafts | Cars |
---|---|---|---|---|
ResNet-152 | 2K | TODO | ||
ResNet-101 | 2K | |||
ResNet-50 | 2K | |||
DenseNet | 1K | |||
Inception-v3 | 2K | |||
VGG-D | 4K | |||
AlexNet | 4K |