-
Notifications
You must be signed in to change notification settings - Fork 41
/
Reconstruction_Code_for_ISTA_Net_Plus.py
294 lines (195 loc) · 8.92 KB
/
Reconstruction_Code_for_ISTA_Net_Plus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
'''
Test Platform: Tensorflow version: 1.2.0
Paper Information:
ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive Sensing
Jian Zhang and Bernard Ghanem
IEEE Conference on Computer Vision and Pattern Recognition (CVPR2018), Salt Lake City, USA, Jun. 2018.
Email: [email protected]
2018/5/16
'''
import tensorflow as tf
import scipy.io as sio
import numpy as np
import glob
from time import time
from PIL import Image
import math
CS_ratio = 25 # 1, 4, 10, 25, 30,, 40, 50
cpkt_model_number = 200
if CS_ratio == 4:
n_input = 43
elif CS_ratio == 1:
n_input = 10
elif CS_ratio == 10:
n_input = 109
elif CS_ratio == 25:
n_input = 272
elif CS_ratio == 30:
n_input = 327
elif CS_ratio == 40:
n_input = 436
elif CS_ratio == 50:
n_input = 545
n_output = 1089
batch_size = 64
PhaseNumber = 9
nrtrain = 88912
learning_rate = 0.0001
EpochNum = 200
Phi_data_Name = 'phi_0_%d_1089.mat' % CS_ratio
Phi_data = sio.loadmat(Phi_data_Name)
Phi_input = Phi_data['phi'].transpose()
Training_data_Name = 'Training_Data_Img91.mat'
Training_data = sio.loadmat(Training_data_Name)
Training_inputs = Training_data['inputs']
Training_labels = Training_data['labels']
# Computing Initialization Matrix
XX = Training_labels.transpose()
BB = np.dot(Phi_input.transpose(), XX)
BBB = np.dot(BB, BB.transpose())
CCC = np.dot(XX, BB.transpose())
PhiT_ = np.dot(CCC, np.linalg.inv(BBB))
del XX, BB, BBB, Training_data
PhiInv_input = PhiT_.transpose()
PhiTPhi_input = np.dot(Phi_input, Phi_input.transpose())
Test_Img = './Test_Image'
def imread_CS_py(imgName):
block_size = 33
Iorg = np.array(Image.open(imgName), dtype='float32')
[row, col] = Iorg.shape
row_pad = block_size-np.mod(row,block_size)
col_pad = block_size-np.mod(col,block_size)
Ipad = np.concatenate((Iorg, np.zeros([row, col_pad])), axis=1)
Ipad = np.concatenate((Ipad, np.zeros([row_pad, col+col_pad])), axis=0)
[row_new, col_new] = Ipad.shape
return [Iorg, row, col, Ipad, row_new, col_new]
def img2col_py(Ipad, block_size):
[row, col] = Ipad.shape
row_block = row/block_size
col_block = col/block_size
block_num = int(row_block*col_block)
img_col = np.zeros([block_size**2, block_num])
count = 0
for x in range(0, row-block_size+1, block_size):
for y in range(0, col-block_size+1, block_size):
img_col[:, count] = Ipad[x:x+block_size, y:y+block_size].reshape([-1])
# img_col[:, count] = Ipad[x:x+block_size, y:y+block_size].transpose().reshape([-1])
count = count + 1
return img_col
def col2im_CS_py(X_col, row, col, row_new, col_new):
block_size = 33
X0_rec = np.zeros([row_new, col_new])
count = 0
for x in range(0, row_new-block_size+1, block_size):
for y in range(0, col_new-block_size+1, block_size):
X0_rec[x:x+block_size, y:y+block_size] = X_col[:, count].reshape([block_size, block_size])
# X0_rec[x:x+block_size, y:y+block_size] = X_col[:, count].reshape([block_size, block_size]).transpose()
count = count + 1
X_rec = X0_rec[:row, :col]
return X_rec
def psnr(img1, img2):
img1.astype(np.float32)
img2.astype(np.float32)
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return 100
PIXEL_MAX = 255.0
return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
filepaths = glob.glob(Test_Img + '/*.tif')
Phi = tf.constant(Phi_input, dtype=tf.float32)
PhiTPhi = tf.constant(PhiTPhi_input, dtype=tf.float32)
PhiInv = tf.constant(PhiInv_input, dtype=tf.float32)
X_input = tf.placeholder(tf.float32, [None, n_input])
X_output = tf.placeholder(tf.float32, [None, n_output])
X0 = tf.matmul(X_input, PhiInv)
PhiTb = tf.matmul(X_input, tf.transpose(Phi))
def add_con2d_weight_bias(w_shape, b_shape, order_no):
Weights = tf.get_variable(shape=w_shape, initializer=tf.contrib.layers.xavier_initializer_conv2d(), name='Weights_%d' % order_no)
biases = tf.Variable(tf.random_normal(b_shape, stddev=0.05), name='biases_%d' % order_no)
return [Weights, biases]
def ista_block(input_layers, input_data, layer_no):
tau_value = tf.Variable(0.1, dtype=tf.float32)
lambda_step = tf.Variable(0.1, dtype=tf.float32)
soft_thr = tf.Variable(0.1, dtype=tf.float32)
conv_size = 32
filter_size = 3
x1_ista = tf.add(input_layers[-1] - tf.scalar_mul(lambda_step, tf.matmul(input_layers[-1], PhiTPhi)), tf.scalar_mul(lambda_step, PhiTb)) # X_k - lambda*A^TAX
x2_ista = tf.reshape(x1_ista, shape=[-1, 33, 33, 1])
[Weights0, bias0] = add_con2d_weight_bias([filter_size, filter_size, 1, conv_size], [conv_size], 0)
[Weights1, bias1] = add_con2d_weight_bias([filter_size, filter_size, conv_size, conv_size], [conv_size], 1)
[Weights11, bias11] = add_con2d_weight_bias([filter_size, filter_size, conv_size, conv_size], [conv_size], 11)
[Weights2, bias2] = add_con2d_weight_bias([filter_size, filter_size, conv_size, conv_size], [conv_size], 2)
[Weights22, bias22] = add_con2d_weight_bias([filter_size, filter_size, conv_size, conv_size], [conv_size], 22)
[Weights3, bias3] = add_con2d_weight_bias([filter_size, filter_size, conv_size, 1], [1], 3)
x3_ista = tf.nn.conv2d(x2_ista, Weights0, strides=[1, 1, 1, 1], padding='SAME')
x4_ista = tf.nn.relu(tf.nn.conv2d(x3_ista, Weights1, strides=[1, 1, 1, 1], padding='SAME'))
x44_ista = tf.nn.conv2d(x4_ista, Weights11, strides=[1, 1, 1, 1], padding='SAME')
x5_ista = tf.multiply(tf.sign(x44_ista), tf.nn.relu(tf.abs(x44_ista) - soft_thr))
x6_ista = tf.nn.relu(tf.nn.conv2d(x5_ista, Weights2, strides=[1, 1, 1, 1], padding='SAME'))
x66_ista = tf.nn.conv2d(x6_ista, Weights22, strides=[1, 1, 1, 1], padding='SAME')
x7_ista = tf.nn.conv2d(x66_ista, Weights3, strides=[1, 1, 1, 1], padding='SAME')
x7_ista = x7_ista + x2_ista
x8_ista = tf.reshape(x7_ista, shape=[-1, 1089])
x3_ista_sym = tf.nn.relu(tf.nn.conv2d(x3_ista, Weights1, strides=[1, 1, 1, 1], padding='SAME'))
x4_ista_sym = tf.nn.conv2d(x3_ista_sym, Weights11, strides=[1, 1, 1, 1], padding='SAME')
x6_ista_sym = tf.nn.relu(tf.nn.conv2d(x4_ista_sym, Weights2, strides=[1, 1, 1, 1], padding='SAME'))
x7_ista_sym = tf.nn.conv2d(x6_ista_sym, Weights22, strides=[1, 1, 1, 1], padding='SAME')
x11_ista = x7_ista_sym - x3_ista
return [x8_ista, x11_ista]
def inference_ista(input_tensor, n, X_output, reuse):
layers = []
layers_symetric = []
layers.append(input_tensor)
for i in range(n):
with tf.variable_scope('conv_%d' %i, reuse=reuse):
[conv1, conv1_sym] = ista_block(layers, X_output, i)
layers.append(conv1)
layers_symetric.append(conv1_sym)
return [layers, layers_symetric]
[Prediction, Pre_symetric] = inference_ista(X0, PhaseNumber, X_output, reuse=False)
cost0 = tf.reduce_mean(tf.square(X0 - X_output))
def compute_cost(Prediction, X_output, PhaseNumber):
cost = tf.reduce_mean(tf.square(Prediction[-1] - X_output))
cost_sym = 0
for k in range(PhaseNumber):
cost_sym += tf.reduce_mean(tf.square(Pre_symetric[k]))
return [cost, cost_sym]
[cost, cost_sym] = compute_cost(Prediction, X_output, PhaseNumber)
cost_all = cost + 0.01*cost_sym
optm_all = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost_all)
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
saver = tf.train.Saver(tf.global_variables(), max_to_keep=100)
sess = tf.Session(config=config)
# sess.run(init)
ImgNum = len(filepaths)
PSNR_All = np.zeros([1, ImgNum], dtype=np.float32)
model_dir = 'Phase_%d_ratio_0_%d_ISTA_Net_plus_Model' % (PhaseNumber, CS_ratio)
saver.restore(sess, './%s/CS_Saved_Model_%d.cpkt' % (model_dir, cpkt_model_number))
output_file_name = "PSNR_Results_%s.txt" % (model_dir)
output_file = open(output_file_name, 'a')
for img_no in range(ImgNum):
imgName = filepaths[img_no]
[Iorg, row, col, Ipad, row_new, col_new] = imread_CS_py(imgName)
Icol = img2col_py(Ipad, 33).transpose()/255.0
print(Ipad.shape)
Img_input = np.dot(Icol, Phi_input)
Img_output = Icol
start = time()
Prediction_value = sess.run(Prediction[-1], feed_dict={X_input: Img_input})
end = time()
cost_sym_value = sess.run(cost_sym, feed_dict={X_input: Img_input, X_output: Img_output})
X_rec = col2im_CS_py(Prediction_value.transpose(), row, col, row_new, col_new)
rec_PSNR = psnr(X_rec * 255, Iorg)
print("Run time for %s is %.4f, PSNR is %.2f, loss sym is %.4f" % (imgName, (end - start), rec_PSNR, cost_sym_value))
img_rec_name = "%s_rec_%s_%d_PSNR_%.2f.png" % (imgName, model_dir, cpkt_model_number, rec_PSNR)
x_im_rec = Image.fromarray(np.clip(X_rec * 255, 0, 255).astype(np.uint8))
x_im_rec.save(img_rec_name)
PSNR_All[0, img_no] = rec_PSNR
output_data = "Avg PSNR is %.2f dB, cpkt NO. is %d \n" % (np.mean(PSNR_All), cpkt_model_number)
print(output_data)
output_file.write(output_data)
output_file.close()
sess.close()
print("Reconstruction READY")