-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_derain.py
89 lines (81 loc) · 3.89 KB
/
train_derain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
torch.backends.cudnn.benchmark = True
import torch.optim as optim
import os
from dataset.imgdata import getloader
from utils.model_utils import get_arch
from utils.common import print_network
from torch.optim.lr_scheduler import MultiStepLR
import time
import argparse
from loss import SSIM
parser = argparse.ArgumentParser()
parser.add_argument('--arch', type=str, default="IDT")
parser.add_argument('--in_chans', type=int, default=3)
parser.add_argument('--embed_dim', type=int, default=32)
parser.add_argument('--win_size', type=int, default=8)
parser.add_argument('--depths', type=int, nargs='+', default=[3, 3, 2, 2, 1, 1, 2, 2, 3])
parser.add_argument('--num_heads', type=int, nargs='+', default=[1, 2, 4, 8, 16, 16, 8, 4, 2])
parser.add_argument('--mlp_ratio', type=float, default=4.0)
parser.add_argument('--qkv_bias', type=bool, default=True)
parser.add_argument('--downtype', type=str, default='Downsample', help="Downsample|Shufflesample")
parser.add_argument('--uptype', type=str, default='Upsample', help="Upsample|Unshufflesample")
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--shuffle', action='store_true', help='shuffle for dataloader')
parser.add_argument('--crop_size', type=int, default=128, help='crop size for network')
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. -1 for CPU')
parser.add_argument('--nepochs', type=int, default=400)
parser.add_argument('--lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('--channel', type=int, default=32)
parser.add_argument('--data_path', type=str, default="E:\\rain_data_train_Heavy")
parser.add_argument('--save_path', type=str, default="E:\\transformer_model")
parser.add_argument('--save_freq', type=int, default=10)
parser.add_argument('--dis_freq', type=int, default=40)
parser.add_argument('--milestone', type=int, nargs='+', default=[100, 250, 350], help="When to decay learning rate")
parser.add_argument('--embed', type=int, default=32)
opt = parser.parse_args()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
if __name__ == '__main__':
savepath = opt.save_path
if not os.path.exists(savepath):
os.makedirs(savepath)
trainloader = getloader(opt)
model = get_arch(opt)
print_network(model)
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999))
scheduler = MultiStepLR(optimizer, milestones=opt.milestone, gamma=0.1)
######### DataParallel ###########
model = torch.nn.DataParallel(model)
model.cuda()
ssimloss = SSIM().cuda()
run_loss = 0.0
global_step = 0
print("Start training!")
batch_num = 0
for epoch in range(opt.nepochs):
print("####### Epoch:%d starts #######" %(epoch + 1))
Dis_start = time.time()
for train_x, train_y in trainloader:
global_step += 1
train_x = train_x.cuda()
train_y = train_y.cuda()
optimizer.zero_grad()
out = model(train_x)
loss = -1 * ssimloss(out, train_y)
loss.backward()
optimizer.step()
batch_num += 1
run_loss += loss.item()
if global_step % opt.dis_freq == 0:
Dis_end = time.time()
print("|Epoch:%d, global step:%d, loss:%.3f time:%.3f|" %(epoch+1, global_step, run_loss/opt.dis_freq,
Dis_end - Dis_start))
run_loss = 0.0
Dis_start = Dis_end
scheduler.step()
torch.save(model.state_dict(), os.path.join(savepath, 'net_latest.pth'))
if (epoch + 1) % opt.save_freq == 0:
torch.save(model.state_dict(), os.path.join(savepath,
'net_epoch_%d.pth' % (epoch + 1)))