forked from aquaskyline/16GT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFisherExactTest.cpp
530 lines (450 loc) · 16.7 KB
/
FisherExactTest.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <float.h>
#include <omp.h>
#include "dependencies.h"
#include "FisherExactTest.h"
#define errorJitterStart 5
#define errorJitterEnd 6
#define geometricMeanRoot 0.5f
#define indelDifficultyCoefficient 1.375f
unsigned int gpuGenotype2int[16];
double gpuSnpPrior[256];
void copyGenotypeTableToGPU(unsigned int *genotype2int) {
memcpy(gpuGenotype2int, genotype2int, 16 * sizeof(unsigned int));
}
void copySnpPriorToGPU(double *snpPrior) {
memcpy(gpuSnpPrior, snpPrior, 256 * sizeof(double));
}
float fisher2tail(int a, int b, int c, int d);
float fisher2tail(int n11, int n1_, int n_1, int n)
{
n += n11 + n1_ + n_1;
n1_ += n11;
n_1 += n11;
float poa;
poa = hyper_323(n11, n1_, n_1, n);
int x;
float pox = poa;
float p_twotail = 0;
p_twotail += poa;
float poa_e = poa * 1.000000001f;
int min = (int) fmaxf(0, n1_ + n_1 - n);
for (x = n11; x > min; --x) {
pox = pox * (float) (x * (n + x - n1_ - n_1)) / ((n1_ - x + 1) * (n_1 - x + 1));
p_twotail += pox * (pox < poa_e);
}
int max = (int) fminf(n1_, n_1);
pox = poa;
for (x = n11 + 1; x <= max; ++x) {
pox = pox * (float) (n1_ - (x - 1)) * (n_1 - (x - 1)) / ((n + x - n1_ - n_1) * x);
p_twotail += pox * (pox < poa_e);
}
return p_twotail;
}
int prefill_likelihood_cache_with_p_err(LikelihoodCache *lc, float b_err, float ub_err) {
float P_err_s = b_err / ALPHABET_SIZE;
float P_err_i = ub_err / 2;
float P_err_base = 3 * P_err_s + 2 * P_err_i;
float hom_base_err = 1.0f - P_err_base;
float hom_base_e_err = P_err_base;
float P_err_indel = 4 * P_err_s + P_err_i;
float hom_indel_err = 1.0f - P_err_indel;
float hom_indel_e_err = P_err_indel;
float P_err_base_base = 2 * P_err_s + 2 * P_err_i;
float het_base_err = 0.5f - P_err_base_base;
float het_base_e_err = P_err_base_base;
float P_err_base_indel = 3 * P_err_s + P_err_i;
float het_indel_1_err = 0.5f - P_err_base_indel;
float het_indel_1_e_err = P_err_base_indel;
float P_err_indel_indel = 4 * P_err_s;
float het_indel_2_err = 0.5f - P_err_indel_indel;
float het_indel_2_e_err = P_err_indel_indel;
return likelihood_cache_prefill(lc,
hom_base_err, hom_base_e_err,
hom_indel_err, hom_indel_e_err,
het_base_err, het_base_e_err,
het_indel_1_err, het_indel_1_e_err,
het_indel_2_err, het_indel_2_e_err);
}
#ifdef USE_FISHER_LOOKUP_TABLE
#define OVERFLOW_EXP 849
#define RET_EXP_LIMIT -1500
#define OVERFLOW_HANDLER 3.7537584144023501e+255
double checkOverflowAndReturn(double ret) {
int ret_exp;
frexp(ret, &ret_exp);
if (ret == .0 || ret_exp - OVERFLOW_EXP < RET_EXP_LIMIT) {
return 0;
}
double downRet = ret / OVERFLOW_HANDLER;
if (downRet != .0) {
return downRet;
}
return DBL_MIN;
}
static void GenerateIntegerArrayFlanking5(int num, int *ary) {
ary[0] = num - 5;
ary[1] = num - 4;
ary[2] = num - 3;
ary[3] = num - 2;
ary[4] = num - 1;
ary[5] = num;
ary[6] = num + 1;
ary[7] = num + 2;
ary[8] = num + 3;
ary[9] = num + 4;
ary[10] = num + 5;
for (int i = 0; i < 11; ++i) {
if (ary[i] < 0) {
ary[i] = 0;
}
}
}
double Likelihood_homo_base(unsigned int W[], int targetChar, int W_total,
double P_err_s, double P_err_i, LikelihoodCache *lc) {
double P_err = 3 * P_err_s + 2 * P_err_i;
int error0 = W_total * (1.0f - P_err) + 0.5f;
int error1 = W_total * P_err + 0.5f;
double homo_base = fisher_homo_base(lc, W[targetChar], error0, W_total);
int ary[11];
GenerateIntegerArrayFlanking5(W_total - W[targetChar], ary);
double homo_base_e = fisher_homo_base_e(lc, ary[errorJitterStart], error1, W_total);
for (int i = errorJitterStart + 1; i < errorJitterEnd; ++i) {
double tmp = fisher_homo_base_e(lc, ary[i], error1, W_total);
homo_base_e = homo_base_e > tmp ? homo_base_e : tmp;
}
double ret = homo_base * OVERFLOW_HANDLER * homo_base_e;
return checkOverflowAndReturn(ret);
}
double Likelihood_homo_indel(unsigned int W[], int targetChar, int W_total,
double P_err_s, double P_err_i, LikelihoodCache *lc) {
double P_err = 4 * P_err_s + P_err_i;
int error0 = W_total * (1.0f - P_err) + 0.5f;
int error1 = W_total * P_err + 0.5f;
double homo_indel = fisher_homo_indel(lc, W[targetChar], error0, W_total);
int ary[11];
GenerateIntegerArrayFlanking5(W_total - W[targetChar], ary);
double homo_indel_e = fisher_homo_indel_e(lc, ary[errorJitterStart], error1, W_total);
for (int i = errorJitterStart + 1; i < errorJitterEnd; ++i) {
double tmp = fisher_homo_indel_e(lc, ary[i], error1, W_total);
homo_indel_e = homo_indel_e > tmp ? homo_indel_e : tmp;
}
double ret = homo_indel * OVERFLOW_HANDLER * homo_indel_e;
return checkOverflowAndReturn(ret);
}
double Likelihood_het_base(unsigned int W[], int targetChar1, int targetChar2, int W_total,
double P_err_s, double P_err_i, LikelihoodCache *lc) {
double P_err = 2 * P_err_s + 2 * P_err_i;
double P_err_half = P_err * 0.5f;
int error0 = W_total * (0.5f - P_err_half) + 0.5f;
int error1 = W_total * P_err_half + 0.5f;
int W_total_half = W_total * 0.5f + 0.5f;
double het_base_1 = fisher_het_base(lc, W[targetChar1], error0, W_total_half);
double het_base_2 = fisher_het_base(lc, W[targetChar2], error0, W_total_half);
int ary[11];
GenerateIntegerArrayFlanking5(W_total - W[targetChar1] - W[targetChar2], ary);
double het_base_e = fisher_het_base_e(lc, ary[errorJitterStart], error1, W_total);
for (int i = errorJitterStart + 1; i < errorJitterEnd; ++i) {
double tmp = fisher_het_base_e(lc, ary[i], error1, W_total);
het_base_e = het_base_e > tmp ? het_base_e : tmp;
}
double ret = pow(het_base_1, geometricMeanRoot) * pow(het_base_2, geometricMeanRoot) * OVERFLOW_HANDLER * het_base_e;
return checkOverflowAndReturn(ret);
}
double Likelihood_het_indel_1(unsigned int W[], int targetChar1, int targetChar2, int W_total,
double P_err_s, double P_err_i, LikelihoodCache *lc) {
double P_err = 3 * P_err_s + P_err_i;
double P_err_half = P_err * 0.5f;
int error0 = W_total * (0.5f - P_err_half) + 0.5f;
int error1 = W_total * P_err_half + 0.5f;
int W_total_half = W_total * 0.5f + 0.5f;
double het_indel_1_char1 = fisher_het_indel_1(lc, W[targetChar1], error0, W_total_half);
double het_indel_1_char2 = fisher_het_indel_2(lc, W[targetChar2], error0, W_total_half);
int ary[11];
GenerateIntegerArrayFlanking5(W_total - W[targetChar1] - W[targetChar2], ary);
double het_indel_e_1 = fisher_het_indel_e_1(lc, ary[errorJitterStart], error1, W_total);
for (int i = errorJitterStart + 1; i < errorJitterEnd; ++i) {
double tmp = fisher_het_indel_e_1(lc, ary[i], error1, W_total);
het_indel_e_1 = het_indel_e_1 > tmp ? het_indel_e_1 : tmp;
}
double ret =
pow(het_indel_1_char1, geometricMeanRoot) * pow(het_indel_1_char2, geometricMeanRoot) * OVERFLOW_HANDLER *
het_indel_e_1;
return checkOverflowAndReturn(ret);
}
double Likelihood_het_indel_2(unsigned int W[], int targetChar1, int targetChar2, int W_total, double P_err_s,
LikelihoodCache *lc) {
double P_err = 4 * P_err_s;
double P_err_half = P_err * 0.5f;
int error0 = W_total * (0.5f - P_err_half) + 0.5f;
int error1 = W_total * P_err_half + 0.5f;
int W_total_half = W_total * 0.5f + 0.5f;
double het_indel_2_char1 = fisher_het_indel_2(lc, W[targetChar1], error0, W_total_half);
double het_indel_2_char2 = fisher_het_indel_2(lc, W[targetChar2], error0, W_total_half);
int ary[11];
GenerateIntegerArrayFlanking5(W_total - W[targetChar1] - W[targetChar2], ary);
double het_indel_e_2 = fisher_het_indel_e_2(lc, ary[errorJitterStart], error1, W_total);
for (int i = errorJitterStart + 1; i < errorJitterEnd; ++i) {
double tmp = fisher_het_indel_e_2(lc, ary[i], error1, W_total);
het_indel_e_2 = het_indel_e_2 > tmp ? het_indel_e_2 : tmp;
}
double ret =
pow(het_indel_2_char1, geometricMeanRoot) * pow(het_indel_2_char2, geometricMeanRoot) * OVERFLOW_HANDLER *
het_indel_e_2;;
return checkOverflowAndReturn(ret);
}
void computeGenotypeLikelihood(unsigned int W[], char refChar, GenotypeLikelihood *lh,
double p_err_s, double p_err_i, LikelihoodCache *lc) {
unsigned int indelCount = W[4] + W[5];
int idx = (int) refChar;
unsigned int refWeightBackup;
if (indelCount) {
refWeightBackup = W[idx];
double tmp = (double) indelCount * (indelDifficultyCoefficient) + 0.5f;
tmp = W[idx] - tmp;
if (tmp <= 0) { tmp = 0; }
W[idx] = tmp;
}
int W_total = 0;
int i, j;
for (i = 0; i < COUNTER_NUM; ++i) {
W_total += W[i];
}
int index = 0;
for (i = 0; i < ALPHABET_SIZE; i++) {
for (j = i; j < ALPHABET_SIZE; j++) {
if (i == j) {
lh->likelihood[index] = fmin(1.0, Likelihood_homo_base(W, i, W_total, p_err_s, p_err_i, lc));
} else {
lh->likelihood[index] = fmin(1.0, Likelihood_het_base(W, i, j, W_total, p_err_s, p_err_i, lc));
}
index++;
}
}
#ifdef GENOTYPE_16
lh->likelihood[index++] = fmin(1.0, Likelihood_het_indel_1(W, 0, 4, W_total, p_err_s, p_err_i, lc));
lh->likelihood[index++] = fmin(1.0, Likelihood_het_indel_1(W, 1, 4, W_total, p_err_s, p_err_i, lc));
lh->likelihood[index++] = fmin(1.0, Likelihood_het_indel_1(W, 2, 4, W_total, p_err_s, p_err_i, lc));
lh->likelihood[index++] = fmin(1.0, Likelihood_het_indel_1(W, 3, 4, W_total, p_err_s, p_err_i, lc));
lh->likelihood[index++] = fmin(1.0, Likelihood_homo_indel(W, 4, W_total, p_err_s, p_err_i, lc));
lh->likelihood[index++] = fmin(1.0, Likelihood_het_indel_2(W, 5, 4, W_total, p_err_s, lc));
#endif
if (indelCount) {
W[idx] = refWeightBackup;
}
}
void
computeGenotypeLikelihoodWrapper(InputStat *in, MetaReference *reference, GenotypeLikelihood *lh, IniParams ini_params,
unsigned int input_size, LikelihoodCache *lc) {
omp_set_num_threads(ini_params.Ini_NumOfCpuThreads);
#pragma omp parallel for
for (int i = 0; i < input_size; i++) {
computeGenotypeLikelihood(in[i].W, reference[i].refChar, &(lh[i]), ini_params.Ini_BalanceSubError / ALPHABET_SIZE,
ini_params.Ini_UnbalanceSubError / 2, lc);
}
}
#else
#endif
float Strand_bias(int F, int R, int S) {
return fisher2tail(F, R, S * 0.5, S * 0.5);
}
void computeStrandBiasG(InputStat *in, StrandBias *sb) {
for (int a = 0; a < ALPHABET_SIZE; ++a) {
sb->bias[a] = fminf(1.0f, Strand_bias(in->F[a], in->R[a], in->F[a] + in->R[a]));
}
}
void selectGenotype(unsigned char refChar,
GenotypeLikelihood *lh,
SnpCallingInfo *info) {
#ifdef GENOTYPE_10
info->pD = lh->likelihood[0]
+ lh->likelihood[1]
+ lh->likelihood[2]
+ lh->likelihood[3]
+ lh->likelihood[4]
+ lh->likelihood[5]
+ lh->likelihood[6]
+ lh->likelihood[7]
+ lh->likelihood[8]
+ lh->likelihood[9];
#endif
#ifdef GENOTYPE_16
info->pD = lh->likelihood[0]
+ lh->likelihood[1]
+ lh->likelihood[2]
+ lh->likelihood[3]
+ lh->likelihood[4]
+ lh->likelihood[5]
+ lh->likelihood[6]
+ lh->likelihood[7]
+ lh->likelihood[8]
+ lh->likelihood[9]
+ lh->likelihood[10]
+ lh->likelihood[11]
+ lh->likelihood[12]
+ lh->likelihood[13]
+ lh->likelihood[14]
+ lh->likelihood[15];
#endif
if (info->pD == 0.0) {
const int genotypeMap[][ALPHABET_SIZE] = {{0, 1, 2, 3},
{1, 4, 5, 6},
{2, 5, 7, 8},
{3, 6, 8, 9}};
info->genotype = genotypeMap[refChar][refChar];
for (int i = 0; i < 16; ++i) { info->flh[i] = 0; }
info->bestD = 0;
info->secondD = 0;
return;
}
info->flh[0] = lh->likelihood[0] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[0])];
info->flh[1] = lh->likelihood[1] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[1])];
info->flh[2] = lh->likelihood[2] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[2])];
info->flh[3] = lh->likelihood[3] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[3])];
info->flh[4] = lh->likelihood[4] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[4])];
info->flh[5] = lh->likelihood[5] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[5])];
info->flh[6] = lh->likelihood[6] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[6])];
info->flh[7] = lh->likelihood[7] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[7])];
info->flh[8] = lh->likelihood[8] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[8])];
info->flh[9] = lh->likelihood[9] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[9])];
#ifdef GENOTYPE_16
info->flh[10] = lh->likelihood[10] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[10])];
info->flh[11] = lh->likelihood[11] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[11])];
info->flh[12] = lh->likelihood[12] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[12])];
info->flh[13] = lh->likelihood[13] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[13])];
info->flh[14] = lh->likelihood[14] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[14])];
info->flh[15] = lh->likelihood[15] / info->pD * gpuSnpPrior[((refChar) << 6) | (gpuGenotype2int[15])];
#endif
register int bestI;
register double flh0, flh1;
if (info->flh[0] >= info->flh[1]) {
bestI = 0;
flh0 = info->flh[0];
flh1 = info->flh[1];
} else {
bestI = 1;
flh0 = info->flh[1];
flh1 = info->flh[0];
}
if (info->flh[2] > flh0) {
flh1 = flh0;
flh0 = info->flh[2];
bestI = 2;
} else if (info->flh[2] > flh1) {
flh1 = info->flh[2];
}
if (info->flh[3] > flh0) {
flh1 = flh0;
flh0 = info->flh[3];
bestI = 3;
} else if (info->flh[3] > flh1) {
flh1 = info->flh[3];
}
if (info->flh[4] > flh0) {
flh1 = flh0;
flh0 = info->flh[4];
bestI = 4;
} else if (info->flh[4] > flh1) {
flh1 = info->flh[4];
}
if (info->flh[5] > flh0) {
flh1 = flh0;
flh0 = info->flh[5];
bestI = 5;
} else if (info->flh[5] > flh1) {
flh1 = info->flh[5];
}
if (info->flh[6] > flh0) {
flh1 = flh0;
flh0 = info->flh[6];
bestI = 6;
} else if (info->flh[6] > flh1) {
flh1 = info->flh[6];
}
if (info->flh[7] > flh0) {
flh1 = flh0;
flh0 = info->flh[7];
bestI = 7;
} else if (info->flh[7] > flh1) {
flh1 = info->flh[7];
}
if (info->flh[8] > flh0) {
flh1 = flh0;
flh0 = info->flh[8];
bestI = 8;
} else if (info->flh[8] > flh1) {
flh1 = info->flh[8];
}
if (info->flh[9] > flh0) {
flh1 = flh0;
flh0 = info->flh[9];
bestI = 9;
} else if (info->flh[9] > flh1) {
flh1 = info->flh[9];
}
#ifdef GENOTYPE_16
if (info->flh[10] > flh0) {
flh1 = flh0;
flh0 = info->flh[10];
bestI = 10;
} else if (info->flh[10] > flh1) {
flh1 = info->flh[10];
}
if (info->flh[11] > flh0) {
flh1 = flh0;
flh0 = info->flh[11];
bestI = 11;
} else if (info->flh[11] > flh1) {
flh1 = info->flh[11];
}
if (info->flh[12] > flh0) {
flh1 = flh0;
flh0 = info->flh[12];
bestI = 12;
} else if (info->flh[12] > flh1) {
flh1 = info->flh[12];
}
if (info->flh[13] > flh0) {
flh1 = flh0;
flh0 = info->flh[13];
bestI = 13;
} else if (info->flh[13] > flh1) {
flh1 = info->flh[13];
}
if (info->flh[14] > flh0) {
flh1 = flh0;
flh0 = info->flh[14];
bestI = 14;
} else if (info->flh[14] > flh1) {
flh1 = info->flh[14];
}
if (info->flh[15] > flh0) {
flh1 = flh0;
flh0 = info->flh[15];
bestI = 15;
} else if (info->flh[15] > flh1) {
flh1 = info->flh[15];
}
#endif
info->bestD = flh0;
info->secondD = flh1;
info->genotype = bestI;
}
void computeGenotypeWrapper(unsigned char *refChar,
GenotypeLikelihood *lh, SnpCallingInfo *info, IniParams ini_params,
unsigned int input_size) {
omp_set_num_threads(ini_params.Ini_NumOfCpuThreads);
#pragma omp parallel for
for (int i = 0; i < input_size; ++i) {
selectGenotype(refChar[i], &(lh[i]), &(info[i]));
}
}
void computeStrandBias(InputStat *in, StrandBias *sb, IniParams ini_params, unsigned int input_size) {
omp_set_num_threads(ini_params.Ini_NumOfCpuThreads);
#pragma omp parallel for
for (int i = 0; i < input_size; ++i) {
computeStrandBiasG(&(in[i]), &(sb[i]));
}
}