Skip to content

Latest commit

 

History

History
39 lines (28 loc) · 1.44 KB

README.md

File metadata and controls

39 lines (28 loc) · 1.44 KB

DenseCRF Installation

This is a ready-to-use python DenseCRF file for refining saliency maps using dense CRF, which is used in the NeurIPS 2021 paper "Joint Semantic Mining for Weakly Supervised RGB-D Salient Object Detection". If you want to know more about CRF, you can refer to here.

Dependencies

Test successfully on 2080Ti / RTX 3090 / Tesla P40 GPU

  1. Initial conda environment: conda create -n JSM python=3.7.
  2. conda activate JSM
  3. Install pydensecrf: pip install git+https://github.com/lucasb-eyer/pydensecrf.git
  4. pip install --upgrade pip
  5. Install opencv: pip install opencv-python
  6. Install numpy: pip install numpy
  7. Install PIL: pip install Pillow
  8. Install skimage: pip install -U scikit-image

Run test demo

Check whether the installation is successful

  1. cd DenseCRF/examples/
  2. python main.py
  3. Check the outputs in ./output file.

Maybe Bug

  1. pydensecrf/densecrf/include/Eigen/Core:22:10: fatal error: ‘complex’ file not found
    #include
    ^~~~~~~~~
    1 warning and 1 error generated.

Command: conda install -c conda-forge pydensecrf

Related Reference

  1. https://github.com/Andrew-Qibin/dss_crf
  2. https://github.com/jiwei0921/DenseCRF_refine_saliency-map