-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
88 lines (71 loc) · 3.33 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import numpy # noqa
import torch
from deepclustering2.loss import KL_div
from loguru import logger
from contrastyou import CONFIG_PATH, success
from contrastyou.configure import ConfigManger
from contrastyou.utils import fix_all_seed_within_context, config_logger, extract_model_state_dict
from hook_creator import create_hook_from_config
from semi_seg.arch import UNet
from semi_seg.data.creator import get_data
from semi_seg.hooks import feature_until_from_hooks
from semi_seg.trainers.new_pretrain import PretrainEncoderTrainer
from semi_seg.trainers.new_trainer import SemiTrainer, FineTuneTrainer, MixUpTrainer
trainer_zoo = {"semi": SemiTrainer,
"ft": FineTuneTrainer,
"pretrain": PretrainEncoderTrainer,
"mixup": MixUpTrainer}
def main():
with ConfigManger(
base_path=os.path.join(CONFIG_PATH, "base.yaml"), strict=True
)(scope="base") as config:
seed = config.get("RandomSeed", 10)
_save_dir = config["Trainer"]["save_dir"]
absolute_save_dir = os.path.abspath(os.path.join(SemiTrainer.RUN_PATH, _save_dir))
config_logger(absolute_save_dir)
with fix_all_seed_within_context(seed):
worker(config, absolute_save_dir, seed)
def worker(config, absolute_save_dir, seed, ):
model_checkpoint = config["Arch"].pop("checkpoint", None)
with fix_all_seed_within_context(seed):
model = UNet(**config["Arch"])
if model_checkpoint:
logger.info(f"loading checkpoint from {model_checkpoint}")
model.load_state_dict(extract_model_state_dict(model_checkpoint), strict=True)
trainer_name = config["Trainer"]["name"]
is_pretrain = trainer_name == "pretrain"
total_freedom = True if is_pretrain or trainer_name == "mixup" else False
labeled_loader, unlabeled_loader, val_loader, test_loader = get_data(
data_params=config["Data"], labeled_loader_params=config["LabeledLoader"],
unlabeled_loader_params=config["UnlabeledLoader"], pretrain=is_pretrain, total_freedom=total_freedom)
Trainer = trainer_zoo[trainer_name]
checkpoint = config.get("trainer_checkpoint")
trainer = Trainer(model=model, labeled_loader=labeled_loader, unlabeled_loader=unlabeled_loader,
val_loader=val_loader, test_loader=test_loader,
criterion=KL_div(), config=config,
save_dir=absolute_save_dir,
**{k: v for k, v in config["Trainer"].items() if k != "save_dir" and k != "name"})
if trainer_name != "ft":
with fix_all_seed_within_context(seed):
hooks = create_hook_from_config(model, config, is_pretrain=is_pretrain)
assert len(hooks) > 0, "void hooks"
trainer.register_hooks(*hooks)
if is_pretrain:
until = feature_until_from_hooks(*hooks)
trainer.forward_until = until
with model.set_grad(False, start=until, include_start=False):
trainer.init()
if checkpoint:
trainer.resume_from_path(checkpoint)
trainer.start_training()
else:
trainer.init()
if checkpoint:
trainer.resume_from_path(checkpoint)
trainer.start_training()
success(save_dir=trainer.save_dir)
if __name__ == '__main__':
torch.set_deterministic(True)
# torch.backends.cudnn.benchmark = True
main()