-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathrun.py
233 lines (174 loc) · 8.04 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import datetime
import os
import pprint
import time
import threading
import torch as th
from types import SimpleNamespace as SN
from utils.logging import Logger
from utils.timehelper import time_left, time_str
from os.path import dirname, abspath
from learners import REGISTRY as le_REGISTRY
from runners import REGISTRY as r_REGISTRY
from controllers import REGISTRY as mac_REGISTRY
from components.episode_buffer import ReplayBuffer
from components.transforms import OneHot
def standard_run(_config, _log, game_name):
# check args sanity
_config = args_sanity_check(_config, _log)
args = SN(**_config)
args.device = "cuda:{}".format(args.device_num) if args.use_cuda else "cpu"
# setup loggers
logger = Logger(_log)
_log.info("Experiment Parameters:")
experiment_params = pprint.pformat(_config,
indent=4,
width=1)
_log.info("\n\n" + experiment_params + "\n")
# configure tensorboard logger
unique_token = "{}__{}".format(args.name, datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
args.unique_token = unique_token
if args.use_tensorboard:
tb_logs_direc = os.path.join(dirname(dirname(abspath(__file__))), "results", "tb_logs/{}".format(game_name))
tb_exp_direc = os.path.join(tb_logs_direc, "{}").format(unique_token)
logger.setup_tb(tb_exp_direc)
# Run and train
run_sequential(args=args, logger=logger)
# Clean up after finishing
print("Exiting Main")
print("Stopping all threads")
for t in threading.enumerate():
if t.name != "MainThread":
print("Thread {} is alive! Is daemon: {}".format(t.name, t.daemon))
t.join(timeout=1)
print("Thread joined")
print("Exiting script")
# Making sure framework really exits
os._exit(os.EX_OK)
def evaluate_sequential(args, runner):
for _ in range(args.test_nepisode):
runner.run(test_mode=True)
if args.save_replay:
runner.save_replay()
runner.close_env()
def run_sequential(args, logger):
# Init runner so we can get env info
runner = r_REGISTRY[args.runner](args=args, logger=logger)
# Set up schemes and groups here
env_info = runner.get_env_info()
args.n_agents = env_info["n_agents"]
args.n_actions = env_info["n_actions"]
args.state_shape = env_info["state_shape"]
args.obs_shape = env_info["obs_shape"]
# Default/Base scheme
scheme = {
"state": {"vshape": env_info["state_shape"]},
"obs": {"vshape": env_info["obs_shape"], "group": "agents"},
"actions": {"vshape": (1,), "group": "agents", "dtype": th.long},
"avail_actions": {"vshape": (env_info["n_actions"],), "group": "agents", "dtype": th.int},
"role_avail_actions": {"vshape": (env_info["n_actions"],), "group": "agents", "dtype": th.int},
"reward": {"vshape": (1,)},
"terminated": {"vshape": (1,), "dtype": th.uint8},
"roles": {"vshape": (1,), "group": "agents", "dtype": th.long},
"noise": {"vshape": (args.noise_dim,)}
}
groups = {
"agents": args.n_agents
}
preprocess = {
"actions": ("actions_onehot", [OneHot(out_dim=args.n_actions)])
}
buffer = ReplayBuffer(scheme, groups, args.buffer_size, env_info["episode_limit"] + 1,
preprocess=preprocess,
device="cpu" if args.buffer_cpu_only else args.device)
# Setup multiagent controller here
mac = mac_REGISTRY[args.mac](buffer.scheme, groups, args)
# Give runner the scheme
runner.setup(scheme=scheme, groups=groups, preprocess=preprocess, mac=mac)
# Learner
learner = le_REGISTRY[args.learner](mac, buffer.scheme, logger, args)
if args.use_cuda:
learner.cuda()
runner.set_learner(learner)
if args.checkpoint_path != "":
timesteps = []
timestep_to_load = 0
if not os.path.isdir(args.checkpoint_path):
logger.console_logger.info("Checkpoint directiory {} doesn't exist".format(args.checkpoint_path))
return
# Go through all files in args.checkpoint_path
for name in os.listdir(args.checkpoint_path):
full_name = os.path.join(args.checkpoint_path, name)
# Check if they are dirs the names of which are numbers
if os.path.isdir(full_name) and name.isdigit():
timesteps.append(int(name))
if args.load_step == 0:
# choose the max timestep
timestep_to_load = max(timesteps)
else:
# choose the timestep closest to load_step
timestep_to_load = min(timesteps, key=lambda x: abs(x - args.load_step))
model_path = os.path.join(args.checkpoint_path, str(timestep_to_load))
logger.console_logger.info("Loading model from {}".format(model_path))
learner.load_models(model_path)
runner.t_env = timestep_to_load
if args.evaluate or args.save_replay:
evaluate_sequential(args, runner)
return
# start training
episode = 0
last_test_T = -args.test_interval - 1
last_log_T = 0
model_save_time = 0
start_time = time.time()
last_time = start_time
logger.console_logger.info("Beginning training for {} timesteps".format(args.t_max))
while runner.t_env <= args.t_max:
# Run for a whole episode at a time
episode_batch = runner.run(test_mode=False)
buffer.insert_episode_batch(episode_batch)
if buffer.can_sample(args.batch_size):
episode_sample = buffer.sample(args.batch_size)
# Truncate batch to only filled timesteps
max_ep_t = episode_sample.max_t_filled()
episode_sample = episode_sample[:, :max_ep_t]
if episode_sample.device != args.device:
episode_sample.to(args.device)
learner.train(episode_sample, runner.t_env, episode)
# Execute test runs once in a while
n_test_runs = max(1, args.test_nepisode // runner.batch_size)
if (runner.t_env - last_test_T) / args.test_interval >= 1.0:
logger.console_logger.info("t_env: {} / {}".format(runner.t_env, args.t_max))
logger.console_logger.info("Estimated time left: {}. Time passed: {}".format(
time_left(last_time, last_test_T, runner.t_env, args.t_max), time_str(time.time() - start_time)))
last_time = time.time()
last_test_T = runner.t_env
for _ in range(n_test_runs):
runner.run(test_mode=True)
if args.save_model and (runner.t_env - model_save_time >= args.save_model_interval or model_save_time == 0):
model_save_time = runner.t_env
save_path = os.path.join(args.local_results_path, "models", args.unique_token, str(runner.t_env))
#"results/models/{}".format(unique_token)
os.makedirs(save_path, exist_ok=True)
logger.console_logger.info("Saving models to {}".format(save_path))
# learner should handle saving/loading -- delegate actor save/load to mac,
# use appropriate filenames to do critics, optimizer states
learner.save_models(save_path)
episode += args.batch_size_run
if (runner.t_env - last_log_T) >= args.log_interval:
logger.log_stat("episode", episode, runner.t_env)
logger.print_recent_stats()
last_log_T = runner.t_env
runner.close_env()
logger.console_logger.info("Finished Training")
def args_sanity_check(config, _log):
# set CUDA flags
# config["use_cuda"] = True # Use cuda whenever possible!
if config["use_cuda"] and not th.cuda.is_available():
config["use_cuda"] = False
_log.warning("CUDA flag use_cuda was switched OFF automatically because no CUDA devices are available!")
if config["test_nepisode"] < config["batch_size_run"]:
config["test_nepisode"] = config["batch_size_run"]
else:
config["test_nepisode"] = (config["test_nepisode"]//config["batch_size_run"]) * config["batch_size_run"]
return config