-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretriever_finetuning.py
235 lines (196 loc) · 11.3 KB
/
retriever_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import sys
from typing import List, Callable
import numpy as np
import wandb
from refpydst.data_types import Turn, RetrieverFinetuneRunConfig
from sentence_transformers import SentenceTransformer, models, InputExample
from sentence_transformers.losses import OnlineContrastiveLoss
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from refpydst.retriever.code.data_management import MWDataset, save_embeddings, get_state_transformation_by_type, \
StateTransformationFunction
from refpydst.retriever.code.data_management import get_string_transformation_by_type
from refpydst.retriever.code.embed_based_retriever import EmbeddingRetriever
from refpydst.retriever.code.index_based_retriever import IndexRetriever
from refpydst.retriever.code.pretrained_embed_index import embed_everything
from refpydst.retriever.code.retriever_evaluation import evaluate_retriever_on_dataset
from refpydst.retriever.code.st_evaluator import RetrievalEvaluator
from refpydst.utils.general import read_json, get_output_dir_full_path, REFPYDST_OUTPUTS_DIR, read_json_from_data_dir, \
WANDB_ENTITY, WANDB_PROJECT
class MWContrastiveDataloader:
"""
Constrastive Learning Data Loader w/ hard-negative sampling, from:
@article{hu2022context,
title={In-Context Learning for Few-Shot Dialogue State Tracking},
author={Hu, Yushi and Lee, Chia-Hsuan and Xie, Tianbao and Yu, Tao and Smith, Noah A and Ostendorf, Mari},
journal={arXiv preprint arXiv:2203.08568},
year={2022}
}
"""
def __init__(self, f1_set: MWDataset, pretrained_retriever: IndexRetriever):
"""
:param f1_set:
:param pretrained_retriever:
"""
self.f1_set = f1_set
self.pretrained_retriever = pretrained_retriever
def hard_negative_sampling(self, topk=10, top_range=100):
sentences1 = []
sentences2 = []
scores = []
# do hard negative sampling
for ind in tqdm(range(self.f1_set.n_turns)):
# find nearest neighbors given by pre-trained retriever
this_label = self.f1_set.turn_labels[ind]
nearest_labels = self.pretrained_retriever.label_to_nearest_labels(
this_label, k=top_range + 1)[:-1] # to exclude itself
nearest_args = [self.f1_set.turn_labels.index(
l) for l in nearest_labels]
# topk and bottomk nearest f1 score examples, as hard examples
similarities = self.f1_set.similarity_matrix[ind][nearest_args]
sorted_args = similarities.argsort()
chosen_positive_args = list(sorted_args[-topk:])
chosen_negative_args = list(sorted_args[:topk])
chosen_positive_args = np.array(nearest_args)[chosen_positive_args]
chosen_negative_args = np.array(nearest_args)[chosen_negative_args]
for chosen_arg in chosen_positive_args:
sentences1.append(self.f1_set.turn_utts[ind])
sentences2.append(self.f1_set.turn_utts[chosen_arg])
scores.append(1)
for chosen_arg in chosen_negative_args:
sentences1.append(self.f1_set.turn_utts[ind])
sentences2.append(self.f1_set.turn_utts[chosen_arg])
scores.append(0)
return sentences1, sentences2, scores
def generate_eval_examples(self, topk=5, top_range=100):
# add topk closest, furthest, and n_random random indices
sentences1, sentences2, scores = self.hard_negative_sampling(
topk=topk, top_range=top_range)
scores = [float(s) for s in scores]
return sentences1, sentences2, scores
def generate_train_examples(self, topk=5, top_range=100):
sentences1, sentences2, scores = self.generate_eval_examples(
topk=topk, top_range=top_range)
n_samples = len(sentences1)
return [InputExample(texts=[sentences1[i], sentences2[i]], label=scores[i])
for i in range(n_samples)]
def main(train_fn: str, dev_fn: str, test_fn: str, output_dir: str, pretrained_index_root: str = None,
pretrained_model_full_name: str = 'sentence-transformers/all-mpnet-base-v2', num_epochs: int = 15,
top_k: int = 10, top_range: int = 200,
pooling_mode: str = None, f_beta: float = 1.0, log_wandb_freq: int = 100,
str_transformation_type: str = "default", state_transformation_type: str = "default", **kwargs):
wandb.config = dict(locals())
train_set: List[Turn] = read_json_from_data_dir(train_fn)
# prepare the retriever model
word_embedding_model: models.Transformer = models.Transformer(pretrained_model_full_name, max_seq_length=512)
pooling_model: models.Pooling = models.Pooling(
word_embedding_dimension=word_embedding_model.get_word_embedding_dimension(),
pooling_mode=pooling_mode,
)
# embed everything to initialize a pre-trained index:
if not pretrained_index_root:
pretrained_index_root = get_output_dir_full_path(os.path.join("retriever/pretrained_index", pretrained_model_full_name))
if not os.path.exists(os.path.join(pretrained_index_root, "mw21_train.npy")):
embed_everything(model_name=pretrained_model_full_name,
output_dir=pretrained_index_root)
# prepare pretrained retreiver for fine-tuning
pretrained_train_retriever = IndexRetriever(
datasets=[train_set],
embedding_filenames=[
f"{pretrained_index_root}/mw21_train.npy"
],
search_index_filename=f"{pretrained_index_root}/mw21_train.npy",
sampling_method="pre_assigned",
)
# Choose transformation (how each turn will be represented as a string for retriever training)
string_transformation: Callable[[Turn], str] = get_string_transformation_by_type(str_transformation_type)
state_transformation: StateTransformationFunction = get_state_transformation_by_type(state_transformation_type)
# Preparing dataset
f1_train_set = MWDataset(train_fn, beta=f_beta, string_transformation=string_transformation,
state_transformation=state_transformation)
# Dataloader
mw_train_loader = MWContrastiveDataloader(f1_train_set, pretrained_train_retriever)
# add special tokens and resize
tokens = ["[USER]", "[SYS]", "[CONTEXT]"]
word_embedding_model.tokenizer.add_tokens(tokens, special_tokens=True)
word_embedding_model.auto_model.resize_token_embeddings(len(word_embedding_model.tokenizer))
model = SentenceTransformer(modules=[word_embedding_model, pooling_model], device="cuda:0")
# prepare training dataloaders
all_train_samples = mw_train_loader.generate_train_examples(topk=top_k, top_range=top_range)
train_dataloader = DataLoader(all_train_samples, shuffle=True, batch_size=24)
print(f"number of batches {len(train_dataloader)}")
evaluator: RetrievalEvaluator = RetrievalEvaluator(train_fn=train_fn, dev_fn=dev_fn, index_set=f1_train_set,
string_transformation=string_transformation)
# Training. Loss is constructed base on loss type argument
train_loss: nn.Module = OnlineContrastiveLoss(model=model)
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=num_epochs, warmup_steps=100,
evaluator=evaluator, evaluation_steps=(len(train_dataloader) // 300 + 1) * 100,
output_path=output_dir)
# load best model
model = SentenceTransformer(output_dir, device="cuda:0")
# Note: previously this would embed all train set items, even those not in the training set. However this would risk
# later use of this retriever and its indices with data it wasn't trained on that should be outside of its selection
# pool. For now, not permitting this, and only saving the embeddings for the training set. If needed we can add an
# explicit argument for the dataset to load and embed.
save_embeddings(model, f1_train_set, os.path.join(output_dir, "train_index.npy"))
test_set: List[Turn] = read_json_from_data_dir(test_fn)
model.save(output_dir)
retriever: EmbeddingRetriever = EmbeddingRetriever(
datasets=[train_set],
model_path=output_dir,
search_index_filename=os.path.join(output_dir, "train_index.npy"),
sampling_method="pre_assigned",
string_transformation=string_transformation
)
# save the retriever as an artifact
artifact: wandb.Artifact = wandb.Artifact(wandb.run.name, type="model")
artifact.add_dir(output_dir)
wandb.log_artifact(artifact)
print("Now evaluating retriever ...")
turn_sv, turn_s, dial_sv, dial_s = evaluate_retriever_on_dataset(test_set, retriever)
wandb.log({
"test_top_5_turn_slot_value_f_score": turn_sv,
"test_top_5_turn_slot_name_f_score": turn_s,
"test_top_5_hist_slot_value_f_score": dial_sv,
"test_top_5_hist_slot_name_f_score": dial_s,
})
if __name__ == '__main__':
# input arguments
if os.path.exists(sys.argv[1]):
run_file: str = sys.argv[1]
# arguments are input from a configuration file if the first argument to the program is a valid file
args: RetrieverFinetuneRunConfig = read_json(run_file)
if 'output_dir' not in args:
args['output_dir'] = get_output_dir_full_path(run_file.replace('.json', ''))
if 'run_name' not in args:
args['run_name'] = args['output_dir'].replace(os.environ.get(REFPYDST_OUTPUTS_DIR, "outputs"), "").replace(
'/', '-')
else:
parser = argparse.ArgumentParser()
parser.add_argument('--train_fn', type=str, required=True,
help="training data file (few-shot or full shot)") # e.g. "../../data/mw21_10p_train_v3.json"
parser.add_argument('--dev_fn', type=str, default="data/mw24_100p_dev.json",
help="dev data file (few-shot or full shot)") # e.g. "../../data/mw21_10p_dev_v3.json"
parser.add_argument('--test_fn', type=str, required=True,
help="test_fn data file (few-shot or full shot)") # e.g. "../../data/mw21_10p_dev_v3.json"
parser.add_argument('--output_dir', type=str, required=True,
help="sentence transformer save path") # e.g. mw21_10p_v3
parser.add_argument('--pretrained_index_dir', type=str,
default="retriever/pretrained_index/",
help="directory of pretrained embeddings")
parser.add_argument('--pretrained_model', dest="pretrained_model_full_name", type=str,
default='sentence-transformers/all-mpnet-base-v2', help="embedding model to finetune with")
parser.add_argument('--num_epochs', type=int, default=15)
parser.add_argument('--top_k', type=int, default=10)
parser.add_argument('--top_range', type=int, default=200)
args = vars(parser.parse_args())
default_run_name: str = args['output_dir'].replace("../expts/", "").replace('/', '-')
default_run_group: str = default_run_name.rsplit('-', maxsplit=1)[0]
wandb_entity: str = os.environ.get(WANDB_ENTITY, "kingb12")
wandb_project: str = os.environ.get(WANDB_PROJECT, "refpydst")
wandb.init(project=wandb_project, entity=wandb_entity, group=args.get("run_group", default_run_group),
name=args.get("run_name", default_run_name))
main(**args)