forked from aashimasingh/Roomba-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataPrep.py
185 lines (153 loc) · 6.35 KB
/
dataPrep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import numpy as np
import options
import pickle
def save_obj(obj, name ):
with open('obj/'+ name + '.pkl', 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_obj(name ):
with open('obj/' + name + '.pkl', 'rb') as f:
return pickle.load(f)
def orderedPathMaker(path_dict, start_node):
path_list = []
source = start_node
while True:
sink = path_dict[source]
path_list.append((source,sink))
if sink == charging_end_label:
break
else:
source = sink
return path_list
def labelNodes():
k = 0
for i in range(len(data[0])):
for j in range(len(data[0][0])):
numericLabel[i][j] = k
k = k + 1
for i in range(len(data[0])):
for j in range(len(data[0][0])):
if (data[0][i][j] == -1):
invalid_nodes.append(numericLabel[i][j])
elif (data[0][i][j] == -2):
charging_start_label = numericLabel
charging_nodes.append(numericLabel[i][j])
else:
valid_nodes.append(numericLabel[i][j])
def buildNeighborArcs(i, j):
source_to_sinks_list = []
#adding source node to list
if (numericLabel[i][j] in valid_nodes):
source_to_sinks_list.append(numericLabel[i][j])
elif (numericLabel[i][j] in charging_nodes):
source_to_sinks_list.append(numericLabel[i][j])
#adding sink nodes to list checking in NSEW directions
if ((i + 1) < len(data[0])):
if (numericLabel[i + 1][j] in valid_nodes):
source_to_sinks_list.append(numericLabel[i + 1][j])
elif (numericLabel[i + 1][j] in charging_nodes):
source_to_sinks_list.append(charging_end_label)
if ((j + 1) < len(data[0])):
if (numericLabel[i][j + 1] in valid_nodes):
source_to_sinks_list.append(numericLabel[i][j + 1])
elif (numericLabel[i][j + 1] in charging_nodes):
source_to_sinks_list.append(charging_end_label)
if ((i - 1) >= 0):
if (numericLabel[i - 1][j] in valid_nodes):
source_to_sinks_list.append(numericLabel[i - 1][j])
elif (numericLabel[i - 1][j] in charging_nodes):
source_to_sinks_list.append(charging_end_label)
if ((j - 1) >= 0):
if (numericLabel[i][j - 1] in valid_nodes):
source_to_sinks_list.append(numericLabel[i][j - 1])
elif ((numericLabel[i][j - 1] in charging_nodes) or (numericLabel[i - 1][j] in charging_nodes)):
source_to_sinks_list.append(charging_end_label)
if numericLabel[i][j] == 9:
print('?')
return source_to_sinks_list
if options.dirtFile[-3:]=='npy':
data = np.load(options.dirtFile)
elif options.dirtFile[-3:]=='csv':
data = np.loadtxt(options.dirtFile, delimiter=',')
data = data.astype(int)
nodeMeans = data.mean(axis=0).astype(int)
nodeMeans = np.reshape(nodeMeans, (1, (len(data[0]) * len(data[0]))))
# to convert above to a 2D array
if options.average_plan_used:
data2d = nodeMeans
else:
data2d = np.reshape(data[:options.numScenarios], (options.numScenarios, len(data[0])*len(data[0])))
numericLabel = np.empty([len(data[0]), len(data[0])])
invalid_nodes = []
charging_nodes = []
valid_nodes = []
charging_start_label = options.charging_start_value
charging_end_label = options.charging_end_label
labelNodes()
# building 2d list hold lists of [source_node, sink_node1, sink2, sink3...]
arclist = []
for i in range(0, len(data[0])):
for j in range(len(data[0])):
if numericLabel[i][j] in valid_nodes:
arclist.append(buildNeighborArcs(i, j))
# 0 n+1 arc to allow not vacuming
if numericLabel[i][j] in charging_nodes:
print("charging!!!")
chargeNeighbors = buildNeighborArcs(i, j)
chargeNeighbors.append(charging_end_label)
arclist.append(chargeNeighbors)
# print(arclist)
dirtnodelist = []
for i in range(len(data[0])):
for j in range(len(data[0])):
if numericLabel[i][j] in valid_nodes:
minilist = []
minilist.append(numericLabel[i][j])
minilist.append(data[i][j])
dirtnodelist.append(minilist)
numScenarios = options.numScenarios
#building dictionary to connect arc source - sink to list position
arcIndex = 0
source_sink_arc_dict = {} #key: source value: dict{key: sink value: arc_index}
index_arc_dict = {} #key: index value: (source, sink)
for nodeList in arclist:
source_sink_arc_dict[nodeList[0]] = {}
for i in range(1, len(nodeList)):
source_sink_arc_dict[nodeList[0]][nodeList[i]] = arcIndex
index_arc_dict[arcIndex] = (nodeList[0], nodeList[i])
arcIndex += 1
sink_source_arc_dict = {}
for source in source_sink_arc_dict:
for sink in source_sink_arc_dict[source]:
if sink_source_arc_dict.get(sink, 'not_made') == 'not_made':
sink_source_arc_dict[sink] = {}
sink_source_arc_dict[sink][source] = source_sink_arc_dict[source][sink]
else:
sink_source_arc_dict[sink][source] = source_sink_arc_dict[source][sink]
# nested dictionary with keys [scenario][node] holding tile Index,
dirt_plusminus_dict = {}
dirt_amount_dict = {}
dirtIndex = 0
dirtSum = 0
for scenario in range(numScenarios):
dirt_plusminus_dict[scenario] = {}
dirt_amount_dict[scenario] = {}
for nodeList in arclist:
if nodeList[0] == charging_end_label or nodeList[0] in charging_nodes:
continue
dirt_plusminus_dict[scenario][int(nodeList[0])] = dirtIndex
dirt_amount_dict[scenario][int(nodeList[0])] = data2d[scenario][int(nodeList[0])]
dirtSum += data2d[scenario][int(nodeList[0])]
dirtIndex += 1
#calculate the average dirt level at each node and enter it in as the
constant_dirt_vacuuming_rate = int(dirtSum / dirtIndex)
vacuumed_Amount_dict = {}
for nodeList in arclist:
if nodeList[0] == charging_end_label or nodeList[0] in charging_nodes:
continue
if options.constant_vacuuming:
vacuumed_Amount_dict[int(nodeList[0])] = constant_dirt_vacuuming_rate
else:
vacuumed_Amount_dict[int(nodeList[0])] = nodeMeans[0][int(nodeList[0])]
num_arcs = 0
for arc in arclist:
num_arcs = num_arcs + len(arc) - 1