-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathws_eval.py
152 lines (125 loc) · 3.97 KB
/
ws_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
"""Evaluate word similarity.
Adapted from: `https://github.com/facebookresearch/fastText/blob/316b4c9f499669f0cacc989c32bf2cef23a8f9ac/eval.py`.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import math
import os
import numpy as np
from scipy import stats
logger = logging.getLogger(__name__)
def compat_splitting(line):
return line.decode('utf8').split()
def similarity(v1, v2):
n1 = np.linalg.norm(v1)
n2 = np.linalg.norm(v2)
return np.dot(v1, v2) / n1 / n2
def edit_distence(s1, s2) :
if len(s1) > len(s2):
s1, s2 = s2, s1
distances = range(len(s1) + 1)
for i2, c2 in enumerate(s2):
distances_ = [i2+1]
for i1, c1 in enumerate(s1):
if c1 == c2:
distances_.append(distances[i1])
else:
distances_.append(1 + min((distances[i1], distances[i1 + 1], distances_[-1])))
distances = distances_
return distances[-1]
def editsim(w1, w2):
return -edit_distence(w1, w2) / max(len(w1), len(w2))
def load_vectors(modelPath):
vectors = {}
fin = open(modelPath, 'rb')
for _, line in enumerate(fin):
try:
tab = compat_splitting(line)
vec = np.array([float(x) for x in tab[1:]], dtype=float)
word = tab[0]
if np.linalg.norm(vec) < 1e-6:
continue
if not word in vectors:
vectors[word] = vec
except ValueError:
continue
except UnicodeDecodeError:
continue
fin.close()
return vectors
def eval_ws(modelPath, dataPath, lower, oov_handling="drop"):
mysim = []
gold = []
words = []
drop = 0.0
nwords = 0.0
if modelPath != "EditSim":
vectors = load_vectors(modelPath)
fin = open(dataPath, 'rb')
for line in fin:
tline = compat_splitting(line)
word1 = tline[0]
word2 = tline[1]
golden_score = float(tline[2])
if lower:
word1, word2 = word1.lower(), word2.lower()
nwords = nwords + 1.0
words.append((word1, word2))
if modelPath == "EditSim":
d = editsim(word1, word2)
else:
if (word1 in vectors) and (word2 in vectors):
v1 = vectors[word1]
v2 = vectors[word2]
d = similarity(v1, v2)
else:
drop = drop + 1.0
if oov_handling == "zero":
d = 0
else:
continue
mysim.append(d)
gold.append(golden_score)
fin.close()
corr = stats.spearmanr(mysim, gold)
dataset = os.path.basename(dataPath)
logger.info(f"eval info for: {dataset}")
for _, g, m, (w1, w2) in sorted(zip(stats.zscore(mysim) - stats.zscore(gold), gold, mysim, words)):
logger.info(f"{g:.2f} {m: .2f} {w1} {w2}")
return "{:15s}: {:2.0f} (OOV: {:2.0f}%, {}, l={})".format(
dataset,
corr[0] * 100,
math.ceil(drop / nwords * 100.0),
oov_handling[0],
"T" if lower else "F"
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Process some integers.')
parser.add_argument(
'--model',
'-m',
dest='modelPath',
action='store',
required=True,
help='path to model'
)
parser.add_argument(
'--data',
'-d',
dest='dataPath',
action='store',
required=True,
help='path to data'
)
parser.add_argument('--lower', action='store_true', default=True)
parser.add_argument('--no_lower', dest='lower', action='store_false')
parser.add_argument('--oov_handling', default='drop', choices=['drop', 'zero'])
args = parser.parse_args()
print(eval_ws(args.modelPath, args.dataPath, args.lower, args.oov_handling))