-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathMibS_example1.jl
68 lines (54 loc) · 1.44 KB
/
MibS_example1.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# # MibS: Example 1 (Experimental feature)
# Model of the problem
# First level
# ```math
# \min_{x} -3x -7y,\\
# \notag s.t.\\
# -3x + 2y \leq 12,\\
# x + 2y \leq 20,\\
# x \leq 10,\\
# x \in \mathbb{Z},\\
# ```
# Second level
# ```math
# \min_{y} y,\\
# \notag s.t.\\
# 2x - y <= 7,\\
# -2x + 4y <= 16,\\
# y <= 5\\
# y \in \mathbb{Z}\\
# ```
using BilevelJuMP
using Test
using MibS_jll
model = BilevelModel()
# First we need to create all of the variables in the upper and lower problems:
# Upper level variables
@variable(Upper(model), x, Int)
#Lower level variables
@variable(Lower(model), y, Int)
# Then we can add the objective and constraints of the upper problem:
# Upper level objecive function
@objective(Upper(model), Min, -3x - 7y)
# Upper constraints
@constraints(Upper(model), begin
u1, -3x + 2y <= 12
u2, x + 2y <= 20
u3, x <= 10
end)
# Followed by the objective and constraints of the lower problem:
# Lower objective function
@objective(Lower(model), Min, y)
# Lower constraints
@constraint(Lower(model), l1, 2x - y <= 7)
@constraint(Lower(model), l2, -2x + 4y <= 16)
@constraint(Lower(model), l3, y <= 5)
# Using MibS Solver
solution = BilevelJuMP.solve_with_MibS(model, MibS_jll.mibs)
# Auto testing
@test solution.status == true
@test solution.objective ≈ -53
@test solution.nonzero_upper == Dict(0 => 6.0)
@test solution.nonzero_lower == Dict(0 => 5.0)
@test solution.all_upper["x"] == 6.0
@test solution.all_lower["y"] == 5.0