-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun.py
224 lines (195 loc) · 10.6 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from utils import create_logger,set_seed
import os
import time
import argparse
import json
from PIL import Image
import torch
from clip.clip import CLIP
from gen_utils import generate_caption
from control_gen_utils import control_generate_caption
from transformers import AutoModelForMaskedLM, AutoTokenizer
from torch.utils.data import Dataset, DataLoader
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--batch_size", type=int, default=2, help = "support batch_size>1 currently.")
parser.add_argument("--device", type=str,
default='cuda',choices=['cuda','cpu'])
## Generation and Controllable Type
parser.add_argument('--run_type',
default='controllable',
nargs='?',
choices=['caption', 'controllable'])
parser.add_argument('--prompt',
default='Image of a',type=str)
parser.add_argument('--order',
default='shuffle',
nargs='?',
choices=['sequential', 'shuffle', 'span', 'random'],
help="Generation order of text")
parser.add_argument('--control_type',
default='sentiment',
nargs='?',
choices=["sentiment","pos"],
help="which controllable task to conduct")
parser.add_argument('--pos_type', type=list,
default=[['DET'], ['ADJ','NOUN'], ['NOUN'],
['VERB'], ['VERB'],['ADV'], ['ADP'],
['DET','NOUN'], ['NOUN'], ['NOUN','.'],
['.','NOUN'],['.','NOUN']],
help="predefined part-of-speech templete")
parser.add_argument('--sentiment_type',
default="positive",
nargs='?',
choices=["positive", "negative"])
parser.add_argument('--samples_num',
default=2,type=int)
## Hyperparameters
parser.add_argument("--sentence_len", type=int, default=10)
parser.add_argument("--candidate_k", type=int, default=200)
parser.add_argument("--alpha", type=float, default=0.02, help="weight for fluency")
parser.add_argument("--beta", type=float, default=2.0, help="weight for image-matching degree")
parser.add_argument("--gamma", type=float, default=5.0, help="weight for controllable degree")
parser.add_argument("--lm_temperature", type=float, default=0.1)
parser.add_argument("--num_iterations", type=int, default=10, help="predefined iterations for Gibbs Sampling")
## Models and Paths
parser.add_argument("--lm_model", type=str, default='bert-base-uncased',
help="Path to language model") # bert,roberta
parser.add_argument("--match_model", type=str, default='clip-vit-base-patch32',
help="Path to Image-Text model") # clip,align
parser.add_argument("--caption_img_path", type=str, default='./examples/',
help="file path of images for captioning")
parser.add_argument("--stop_words_path", type=str, default='stop_words.txt',
help="Path to stop_words.txt")
parser.add_argument("--add_extra_stopwords", type=list, default=[],
help="you can add some extra stop words")
args = parser.parse_args()
return args
def run_caption(args, img_name, img_pil_list, lm_model, lm_tokenizer, clip, token_mask, logger, all_results):
image_instance = img_pil_list
gen_texts, clip_scores = generate_caption(img_name, lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
top_k=args.candidate_k, temperature=args.lm_temperature,
max_iter=args.num_iterations,alpha=args.alpha,beta=args.beta,
generate_order = args.order)
for iter_id, gen_text_list in enumerate(gen_texts):
for jj in range(len(gen_text_list)):
image_id = img_name[jj].split(".")[0]
if all_results[iter_id]==None:
all_results[iter_id] = {image_id: gen_text_list[jj]}
else:
all_results[iter_id][image_id] = gen_text_list[jj]
return all_results
def run_control(run_type, args, img_name, img_pil_list, lm_model, lm_tokenizer, clip, token_mask, logger, all_results):
image_instance = img_pil_list
gen_texts, clip_scores = control_generate_caption(img_name, lm_model, clip, lm_tokenizer, image_instance, token_mask, logger,
prompt=args.prompt, batch_size=args.batch_size, max_len=args.sentence_len,
top_k=args.candidate_k, temperature=args.lm_temperature,
max_iter=args.num_iterations, alpha=args.alpha,
beta=args.beta, gamma=args.gamma,
ctl_type = args.control_type, style_type=args.sentiment_type,pos_type=args.pos_type, generate_order=args.order)
for iter_id, gen_text_list in enumerate(gen_texts):
for jj in range(len(gen_text_list)):
image_id = img_name[jj].split(".")[0]
if all_results[iter_id]==None:
all_results[iter_id] = {image_id: gen_text_list[jj]}
else:
all_results[iter_id][image_id] = gen_text_list[jj]
return all_results
if __name__ == "__main__":
args = get_args()
set_seed(args.seed)
run_type = "caption" if args.run_type=="caption" else args.control_type
if run_type=="sentiment":
run_type = args.sentiment_type
if os.path.exists("logger")== False:
os.mkdir("logger")
logger = create_logger(
"logger",'{}_{}_len{}_topk{}_alpha{}_beta{}_gamma{}_lmtemp{}_{}.log'.format(
run_type, args.order,args.sentence_len,
args.candidate_k, args.alpha,args.beta,args.gamma,args.lm_temperature,
time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())))
logger.info(f"Generating order:{args.order}")
logger.info(f"Run type:{run_type}")
logger.info(args)
# Load pre-trained model (weights)
lm_model = AutoModelForMaskedLM.from_pretrained(args.lm_model)
lm_tokenizer = AutoTokenizer.from_pretrained(args.lm_model)
lm_model.eval()
clip = CLIP(args.match_model)
clip.eval()
lm_model = lm_model.to(args.device)
clip = clip.to(args.device)
## Remove stop words, token mask
with open(args.stop_words_path,'r',encoding='utf-8') as stop_words_file:
stop_words = stop_words_file.readlines()
stop_words_ = [stop_word.rstrip('\n') for stop_word in stop_words]
stop_words_ += args.add_extra_stopwords
stop_ids = lm_tokenizer.convert_tokens_to_ids(stop_words_)
token_mask = torch.ones((1,lm_tokenizer.vocab_size))
for stop_id in stop_ids:
token_mask[0,stop_id]=0
token_mask = token_mask.to(args.device)
img_dir = args.caption_img_path
class Imgdata(Dataset):
def __init__(self, dir_path):
self.dir_path = dir_path
self.img_name_list = os.listdir(dir_path)
def __getitem__(self, idx):
img_name = self.img_name_list[idx]
img_item_path = os.path.join(self.dir_path,img_name)
img = Image.open(img_item_path).convert("RGB")
return img, img_name
def __len__(self):
return len(self.img_name_list)
def collate_img(batch_data):
img_path_batch_list = list()
name_batch_list = list()
for unit in batch_data:
img_path_batch_list.append(unit[0])
name_batch_list.append(unit[1])
return img_path_batch_list,name_batch_list
img_data = Imgdata(img_dir)
train_loader = DataLoader(img_data, batch_size=args.batch_size, collate_fn=collate_img, shuffle=False, drop_last=True)
for sample_id in range(args.samples_num):
all_results = [None] * (args.num_iterations+1)
logger.info(f"Sample {sample_id+1}: ")
for batch_idx, (img_batch_pil_list, name_batch_list) in enumerate(train_loader):
logger.info(f"The {batch_idx+1}-th batch:")
with torch.no_grad():
if args.run_type == 'caption':
all_results = run_caption(args, name_batch_list, img_batch_pil_list, lm_model, lm_tokenizer, clip, token_mask, logger, all_results)
elif args.run_type == 'controllable':
all_results = run_control(run_type, args, name_batch_list, img_batch_pil_list,lm_model, lm_tokenizer, clip, token_mask, logger, all_results)
else:
raise Exception('run_type must be caption or controllable!')
if args.run_type == 'caption':
# 保存结果
save_dir = "results/caption_%s_len%d_topk%d_alpha%.3f_beta%.3f_gamma%.3f_lmTemp%.3f/sample_%d" % (
args.order,args.sentence_len, args.candidate_k, args.alpha, args.beta,args.gamma,args.lm_temperature,sample_id)
if os.path.exists(save_dir) == False:
os.makedirs(save_dir)
for iter_id in range(len(all_results)):
if iter_id!=len(all_results)-1:
cur_json_file = os.path.join(save_dir,f"iter_{iter_id}.json")
with open(cur_json_file,'w') as _json:
json.dump(all_results[iter_id], _json)
else:
cur_json_file = os.path.join(save_dir,f"best_clipscore.json")
with open(cur_json_file,'w') as _json:
json.dump(all_results[iter_id], _json)
elif args.run_type == 'controllable':
save_dir = "results/%s_%s_len%d_topk%d_alpha%.3f_beta%.3f_gamma%.3f_lmTemp%.3f/sample_%d" % (
run_type,args.order,args.sentence_len, args.candidate_k, args.alpha, args.beta,args.gamma,args.lm_temperature, sample_id)
if os.path.exists(save_dir) == False:
os.makedirs(save_dir)
for iter_id in range(len(all_results)):
if iter_id!=len(all_results)-1:
cur_json_file = os.path.join(save_dir,f"iter_{iter_id}.json")
with open(cur_json_file,'w') as _json:
json.dump(all_results[iter_id], _json)
else:
cur_json_file = os.path.join(save_dir,f"best_clipscore.json")
with open(cur_json_file,'w') as _json:
json.dump(all_results[iter_id], _json)