-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradio.py
202 lines (153 loc) · 5.29 KB
/
radio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import astropy.units as u
import astropy.constants as const
import numpy as np
from astropy.wcs import WCS
from astropy.io import fits
square_beam = 1/np.sqrt(np.pi / (4 * np.log(2)))
def beam_area(BMAJ, BMIN=None, square = False):
"""
Calculate the beam area in square arcsec
assuming a gausian beam, unless square is set to True
"""
if not isinstance(BMAJ,u.Quantity):
BMAJ = BMAJ * u.arcsec
if (BMIN is not None) and (not isinstance(BMIN,u.Quantity)):
BMIN = BMIN * u.arcsec
BMAJ = BMAJ.to(u.arcsec)
BMIN = BMIN.to(u.arcsec) if BMIN is not None else BMAJ
θsq = BMAJ * BMIN
if square:
return θsq
Ω = np.pi * θsq / (4 * np.log(2))
return Ω
def RJ_temp(S,freq):
"""
S : source flux in Jy
freq : frequency in GHz
"""
if not isinstance(S,u.Quantity):
S = S * u.Jy
if not isinstance(freq,u.Quantity):
freq = freq * u.GHz
λ = (const.c / freq).si
coeff = 2 * const.k_B / λ**2
return (S / coeff).to(u.K)
def RJ(T,freq):
"""
T : source brightness in K
freq : frequency in GHz
"""
if not isinstance(T,u.Quantity):
T = T * u.K
if not isinstance(freq,u.Quantity):
freq = freq * u.GHz
λ = (const.c / freq).si
coeff = 2 * const.k_B / λ**2
return (T * coeff).to(u.Jy)
def convert_K_to_Jy(Tb, res_arcsec, freq_GHz,unit='mJy',manual=False, square=False):
"""
Convert brightness temperature (K) to flux density (Jy/beam or Jy/pixel)
"""
Ω = beam_area(res_arcsec,square=square)
ν = freq_GHz * u.GHz if not isinstance(freq_GHz,u.Quantity) else freq_GHz
if not isinstance(Tb,u.Quantity):
Tb = Tb * u.K
if manual:
λ = (const.c / ν).si
Snu = 2 * const.k_B * Ω * Tb / λ**2
return Snu.si.to(unit,equivalencies=u.dimensionless_angles())
else:
equiv = u.brightness_temperature(ν,Ω)
return Tb.to(unit,equivalencies=equiv)
def convert_Jy_to_K(Snu, res_arcsec, freq_GHz,unit='K',manual=False,square=False):
"""
Convert flux density (Jy/beam or Jy/pixel) to brightness temperature (K)
"""
Ω = beam_area(res_arcsec,square=square)
ν = freq_GHz * u.GHz if not isinstance(freq_GHz,u.Quantity) else freq_GHz
if not isinstance(Snu,u.Quantity):
Snu = Snu * u.Jy
if manual:
λ = (const.c / ν).si
Tb = Snu * λ**2 / (2 * const.k_B * Ω)
return Tb.si.to(unit,equivalencies=u.dimensionless_angles())
else:
equiv = u.brightness_temperature(ν,Ω)
return (Snu).to(unit,equivalencies=equiv)
def convert_JyBeam_to_JyPixel(S_Jy_per_beam, BMAJ, BMIN, arcsec_per_pix):
"""
S_Jy_per_beam : source flux in Jy/beam
BMAJ, BMIN = beam major/minor axis in arcsec
arcsec_per_pixel = pixel scale in arcsec
"""
# gaussian beam
beam_arcsec2 = BMAJ * BMIN * np.pi / (4*np.log(2)) # in arcsec**2
pixels_per_beam = beam_arcsec2 / (arcsec_per_pix)**2
S_Jy_per_pix = S_Jy_per_beam / pixels_per_beam
return S_Jy_per_pix
def convert_JyPixel_to_JyBeam(S_Jy_per_pixel, BMAJ, BMIN, arcsec_per_pix):
"""
S_Jy_per_pixel : source flux in Jy/pixel
BMAJ, BMIN = beam major/minor axis in arcsec
arcsec_per_pixel = pixel scale in arcsec
"""
# gaussian beam
beam_arcsec2 = BMAJ * BMIN * np.pi / (4*np.log(2)) # in arcsec**2
pixels_per_beam = beam_arcsec2 / (arcsec_per_pix)**2
S_Jy_per_beam = S_Jy_per_pixel * pixels_per_beam
return S_Jy_per_beam
def convert_deltav_deltaf(v_kms = 5, freq_ghz=230,unit='MHz'):
f = freq_ghz * u.GHz
Δv = v_kms * u.km/u.s
Δf = (f * Δv/const.c).to(unit)
return Δf
def convert_deltaf_deltav(df_mhz = 3.8, freq_ghz=230,unit='km/s'):
f = freq_ghz * u.GHz
Δf = df_mhz * u.MHz
Δv = (const.c * Δf / f).to(unit)
return Δv
def TP_sens(delta_nu,tint,nant=3):
ηap = 0.69
Aeff = ηap * np.pi * (5.6336616 * u.m)**2
ηq = 0.96
ηc = 0.88
Δν = delta_nu * u.MHz
t = tint * u.s
n_p = 2
wr = 1
Tsys = 114 * u.K
a = 2 * const.k_B * Tsys
b = ηq * ηc * Aeff * np.sqrt(nant * n_p * Δν.si * t)
return (a/b)
def siggas_to_ico(sgas,aco=4.3):
aco= aco * u.Msun * (u.K * u.km/u.s)**-1 / u.pc**2
sig = sgas * (u.Msun/u.pc**2)
return (sig/aco).to(u.K * u.km/u.s)
def get_spec_ax(header3d,N=None):
if not isinstance(header3d, WCS):
wcs = WCS(header3d)
else:
wcs = header3d
if wcs.has_spectral:
# wcs.spectral :: spectral axies
# np.indices(wcs.spectral.array_shape)[0] get indices for spectral axis
# wcs.spectral.array_shape is the shape of the spectral axis
# wcs.spectral.array_index_to_world with units.
if wcs.spectral.array_shape is None:
array_shape = (N,)
else:
array_shape = wcs.spectral.array_shape
return wcs.spectral.array_index_to_world(np.indices(array_shape)[0])
def get_beam(filen):
hdul = fits.open(filen)
header = hdul[0].header
BMAJ = header['BMAJ']
BMIN = header['BMIN']
BPA = header['BPA']
hdul.close()
return BMAJ, BMIN, BPA
def mad(X, astropy=True, axis=None):
if astropy:
return mad_std(X,axis=axis,ignore_nan=True)
else:
return 1.482602218505602 * np.nanmedian(np.abs(X - np.nanmedian(X, axis=axis)), axis=axis)