-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmake_dataset.py
222 lines (199 loc) · 8.49 KB
/
make_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import h5py
import json
import logging
import math
import os
import numpy
import re
import sys
from collections import OrderedDict, Counter
from fuel.datasets import H5PYDataset
from fuel.utils import find_in_data_path
from gensim.models.word2vec import Word2Vec
from matplotlib import pyplot
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.feature_extraction.text import TfidfVectorizer
from vgg import VGGClassifier
def normalizeText(text):
text = text.lower()
text = re.sub(r'<br />', r' ', text).strip()
text = re.sub(r'^https?:\/\/.*[\r\n]*', ' L ', text, flags=re.MULTILINE)
text = re.sub(r'[\~\*\+\^`_#\[\]|]', r' ', text).strip()
text = re.sub(r'[0-9]+', r' N ', text).strip()
text = re.sub(r'([/\'\-\.?!\(\)",:;])', r' \1 ', text).strip()
return text.split()
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
conf_file = sys.argv[1] if len(sys.argv) > 1 else None
with open(conf_file) as f:
locals().update(json.load(f))
with open('list.txt', 'r') as f:
files = f.read().splitlines()
## Load data and define vocab ##
logger.info('Reading json and jpeg files...')
movies = []
vocab_counts = []
clsf = VGGClassifier(model_path='vgg16.tar', synset_words='synset_words.txt')
for i, file in enumerate(files):
with open(file) as f:
data = json.load(f)
data['imdb_id'] = file.split('/')[-1].split('.')[0]
# if 'plot' in data and 'plot outline' in data:
# data['plot'].append(data['plot outline'])
im_file = file.replace('json', 'jpeg')
if all([k in data for k in ('genres', 'plot')] + [os.path.isfile(im_file)]):
plot_id = numpy.array([len(p) for p in data['plot']]).argmax()
data['plot'] = normalizeText(data['plot'][plot_id])
if len(data['plot']) > 0:
vocab_counts.extend(data['plot'])
data['cover'] = VGGClassifier.resize_and_crop_image(
im_file, img_size)
data['vgg_features'] = clsf.get_features(im_file)
movies.append(data)
logger.info('{0:05d} out of {1:05d}: {2:02.2f}%'.format(
i, len(files), float(i) / len(files) * 100))
logger.info('done reading files.')
vocab_counts = OrderedDict(Counter(vocab_counts).most_common())
vocab = ['_UNK_'] + [v for v in vocab_counts.keys()]
googleword2vec = Word2Vec.load_word2vec_format(word2vec_path, binary=True)
ix_to_word = dict(zip(range(len(vocab)), vocab))
word_to_ix = dict(zip(vocab, range(len(vocab))))
lookup = numpy.array([googleword2vec[v] for v in vocab if v in googleword2vec])
numpy.save('metadata.npy', {'ix_to_word': ix_to_word,
'word_to_ix': word_to_ix,
'vocab_size': len(vocab),
'lookup': lookup})
# Define train, dev and test subsets
counts = OrderedDict(
Counter([g for m in movies for g in m['genres']]).most_common())
target_names = list(counts.keys())[:n_classes]
le = MultiLabelBinarizer()
Y = le.fit_transform([m['genres'] for m in movies])
labels = numpy.nonzero(le.transform([[t] for t in target_names]))[1]
B = numpy.copy(Y)
rng = numpy.random.RandomState(rng_seed)
train_idx, dev_idx, test_idx = [], [], []
for l in labels[::-1]:
t = B[:, l].nonzero()[0]
t = rng.permutation(t)
n_test = int(math.ceil(len(t) * test_size))
n_dev = int(math.ceil(len(t) * dev_size))
n_train = len(t) - n_test - n_dev
test_idx.extend(t[:n_test])
dev_idx.extend(t[n_test:n_test + n_dev])
train_idx.extend(t[n_test + n_dev:])
B[t, :] = 0
indices = numpy.concatenate([train_idx, dev_idx, test_idx])
nsamples = len(indices)
nsamples_train, nsamples_dev, nsamples_test = len(
train_idx), len(dev_idx), len(test_idx)
# Obtain feature vectors and text sequences
sequences = []
X = numpy.zeros((indices.shape[0], textual_dim), dtype='float32')
for i, idx in enumerate(indices):
words = movies[idx]['plot']
sequences.append([word_to_ix[w] if w in vocab else unk_idx for w in words])
X[i] = numpy.array([googleword2vec[w]
for w in words if w in googleword2vec]).mean(axis=0)
del googleword2vec
# get n-grams representation
sentences = [' '.join(m['plot']) for m in movies]
ngram_vectorizer = TfidfVectorizer(
analyzer='char', ngram_range=(3, 3), min_df=2)
ngrams_feats = ngram_vectorizer.fit_transform(sentences).astype('float32')
word_vectorizer = TfidfVectorizer(min_df=10)
wordgrams_feats = word_vectorizer.fit_transform(sentences).astype('float32')
# Store data in the hdf5 file
f = h5py.File('multimodal_imdb.hdf5', mode='w')
dtype = h5py.special_dtype(vlen=numpy.dtype('int32'))
features = f.create_dataset('features', X.shape, dtype='float32')
vgg_features = f.create_dataset(
'vgg_features', (nsamples, 4096), dtype='float32')
three_grams = f.create_dataset(
'three_grams', (nsamples, ngrams_feats.shape[1]), dtype='float32')
word_grams = f.create_dataset(
'word_grams', (nsamples, wordgrams_feats.shape[1]), dtype='float32')
images = f.create_dataset(
'images', [nsamples, num_channels] + img_size[::-1], dtype='int32')
seqs = f.create_dataset('sequences', (nsamples,), dtype=dtype)
genres = f.create_dataset('genres', (nsamples, n_classes), dtype='int32')
imdb_ids = f.create_dataset('imdb_ids', (nsamples,), dtype="S7")
imdb_ids[...] = numpy.asarray([m['imdb_id']
for m in movies], dtype='S7')[indices]
features[...] = X
for i, idx in enumerate(indices):
images[i] = movies[idx]['cover']
vgg_features[i] = movies[idx]['vgg_features']
seqs[...] = sequences
genres[...] = Y[indices][:, labels]
three_grams[...] = ngrams_feats[indices].todense()
word_grams[...] = wordgrams_feats[indices].todense()
genres.attrs['target_names'] = json.dumps(target_names)
features.dims[0].label = 'batch'
features.dims[1].label = 'features'
three_grams.dims[0].label = 'batch'
three_grams.dims[1].label = 'features'
word_grams.dims[0].label = 'batch'
word_grams.dims[1].label = 'features'
imdb_ids.dims[0].label = 'batch'
genres.dims[0].label = 'batch'
genres.dims[1].label = 'classes'
vgg_features.dims[0].label = 'batch'
vgg_features.dims[1].label = 'features'
images.dims[0].label = 'batch'
images.dims[1].label = 'channel'
images.dims[2].label = 'height'
images.dims[3].label = 'width'
split_dict = {
'train': {
'features': (0, nsamples_train),
'three_grams': (0, nsamples_train),
'sequences': (0, nsamples_train),
'images': (0, nsamples_train),
'vgg_features': (0, nsamples_train),
'imdb_ids': (0, nsamples_train),
'word_grams': (0, nsamples_train),
'genres': (0, nsamples_train)},
'dev': {
'features': (nsamples_train, nsamples_train + nsamples_dev),
'three_grams': (nsamples_train, nsamples_train + nsamples_dev),
'sequences': (nsamples_train, nsamples_train + nsamples_dev),
'images': (nsamples_train, nsamples_train + nsamples_dev),
'vgg_features': (nsamples_train, nsamples_train + nsamples_dev),
'imdb_ids': (nsamples_train, nsamples_train + nsamples_dev),
'word_grams': (nsamples_train, nsamples_train + nsamples_dev),
'genres': (nsamples_train, nsamples_train + nsamples_dev)},
'test': {
'features': (nsamples_train + nsamples_dev, nsamples),
'three_grams': (nsamples_train + nsamples_dev, nsamples),
'sequences': (nsamples_train + nsamples_dev, nsamples),
'images': (nsamples_train + nsamples_dev, nsamples),
'vgg_features': (nsamples_train + nsamples_dev, nsamples),
'imdb_ids': (nsamples_train + nsamples_dev, nsamples),
'word_grams': (nsamples_train + nsamples_dev, nsamples),
'genres': (nsamples_train + nsamples_dev, nsamples)}
}
f.attrs['split'] = H5PYDataset.create_split_array(split_dict)
f.flush()
f.close()
# Plot distribution
cm = numpy.zeros((n_classes, n_classes), dtype='int')
for i, l in enumerate(labels):
cm[i] = Y[Y[:, l].nonzero()[0]].sum(axis=0)[labels]
cmap = pyplot.cm.Blues
cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, numpy.newaxis]
for i in range(len(target_names)):
cm_normalized[i, i] = 0
pyplot.imshow(cm_normalized, interpolation='nearest', cmap=cmap, aspect='auto')
for i, cas in enumerate(cm):
for j, c in enumerate(cas):
if c > 0:
pyplot.text(j - .2, i + .2, c, fontsize=4)
pyplot.title('Shared labels', fontsize='smaller')
pyplot.colorbar()
tick_marks = numpy.arange(len(target_names))
pyplot.xticks(tick_marks, target_names, rotation=90)
pyplot.yticks(tick_marks, target_names)
pyplot.tight_layout()
pyplot.savefig('distribution.pdf')
pyplot.close()