中文|EN
Currently JoyRL support Python3.7 and Gym0.25.2
conda create -n joyrl python=3.7
conda activate joyrl
pip install -r requirements.txt
Torch:
# CPU
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cpuonly -c pytorch
# GPU
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
# GPU with mirrors
pip install torch==1.10.0+cu113 torchvision==0.11.0+cu113 torchaudio==0.10.0 --extra-index-url https://download.pytorch.org/whl/cu113
you can simply change the parameters (like env_name, algo_name) in config.config.GeneralConfig()
and run:
python main.py
then it will a new folder named tasks
to save results and models.
Or you can custom parameters with a yaml
file as you can seen in config/custom_config_Train.yaml
and run:
python main.py --yaml config/custom_config_Train.yaml
And there are presets yaml files in the presets folder and well trained results in the benchmarks folder.
please click docs
Please click envs to read environments instruments.
Name | Policy | Reference | Author | Notes |
---|---|---|---|---|
Monte Carlo | RL introduction | johnjim0816 | ||
Value Iteration | RL introduction | guoshicheng | ||
Q-learning | RL introduction | johnjim0816 | ||
Sarsa | RL introduction | johnjim0816 | ||
DQN | DQN Paper | johnjim0816, guoshicheng (CNN) | ||
DoubleDQN | DoubleDQN Paper | johnjim0816 | ||
PER_DQN | PER_DQN Paper | wangzhongren | ||
NoisyDQN | NoisyDQN Paper | wangzhongren | ||
DRQN | DRQN Paper | johnjim0816 | understand LSTM | |
C51 | C51 Paper | also called Categorical DQN | ||
REINFORCE | REINFORCE Paper | johnjim0816 | ||
A2C | A2C blog | johnjim0816 | ||
A3C | On | A3C paper | johnjim0816, Ariel Chen | |
PPO | PPO Paper | johnjim0816, Wen Qiu | PPO-clip, PPO-kl | |
DDPG | DDPG Paper | johnjim0816 | ||
TD3 | TD3 Paper | johnjim0816 | ||
SoftQ | SoftQ Paper | johnjim0816 | ||
GAIL | GAIL Paper | Yi Zhang |