-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainDenoising.py
297 lines (249 loc) · 9.72 KB
/
trainDenoising.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""Train a video classification model."""
import numpy as np
import pprint
import torch
from fvcore.nn.precise_bn import get_bn_modules, update_bn_stats
from utils.image import split_test, merge_test, tensor2uint
import models.optimizer as optim
import models.losses as losses
import models.model_builder as model_builder
import utils.metrics as metrics
import utils.misc as misc
import utils.distributed as du
import utils.checkpoint as cu
import utils.logging as logging
import datasets.loader as loader
from utils.dct import get_dct_mask_at_epoch, get_dct_mask_at_validation_epoch
from utils.meters import TrainMeter, ValMeter
logger = logging.get_logger('default')
def train_epoch(train_loader, model, optimizer, train_meter, cur_epoch, cur_gs, cfg):
"""
Perform the video training for one epoch.
Args:
train_loader (loader): video training loader.
model (model): the video model to train.
optimizer (optim): the optimizer to perform optimization on the model's
parameters.
train_meter (TrainMeter): training meters to log the training performance.
cur_epoch (int): current epoch of training.
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
"""
# Enable train mode.
model.train()
train_meter.iter_tic()
gs = cur_gs
# Update the learning rate.
lr = optim.get_epoch_lr(cur_epoch, cfg)
optim.set_lr(optimizer, lr)
for cur_iter, (inputs, gt) in enumerate(train_loader):
# logger.info('toc')
gs = gs + 1
# Transfer the data to the current GPU device.
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
elif isinstance(inputs, dict):
for k, v in inputs.items():
inputs[k] = v.cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
gt = gt.cuda()
losses, training_infos = model(inputs, gs)
# check Nan Loss.
misc.check_nan_losses(loss)
# Perform the backward pass.
optimizer.zero_grad()
loss.backward()
# Update the parameters.
optimizer.step()
train_meter.iter_toc()
# Update and log stats.
training_infos.update(losses)
training_infos.update({"lr": lr})
# log info into meters
train_meter.update_stats(training_infos)
train_meter.log_iter_stats(cur_epoch, cur_iter)
train_meter.iter_tic()
# Update global step, lr, and multigrid stages
gs = gs + 1
# if cur_iter % 100 == 99:
# cu.save_checkpoint_iter(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, gs, cur_iter, cfg)
# Log epoch stats.
train_meter.log_epoch_stats(cur_epoch)
train_meter.reset()
return gs
@torch.no_grad()
def validation_epoch(val_loader, model, val_meter, cur_epoch, cfg):
"""
Evaluate model
"""
model.eval()
logger.info("Start validation")
if 'dct' in cfg.MODEL.ARCH and cfg.SOLVER.USE_DCT_MASK:
freq_mask = get_dct_mask_at_validation_epoch(cfg, cur_epoch).cuda()
else:
freq_mask = None
# batch_size is fixed to 1 on each GPU
for inputs, gt, frame_ids in val_loader:
batch = split_test(inputs, cfg.VAL.VAL_PATCH_SIZE)
# Transfer the data to the current GPU device.
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
elif isinstance(inputs, dict):
for k, v in inputs.items():
inputs[k] = v.cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
print(inputs.shape, flush=True)
preds = []
for inputs in batch:
if freq_mask is not None:
output = model(inputs, freq_mask)
else:
output = model(inputs)
if isinstance(output, tuple):
output = output[0]
preds.append(output.cpu())
pred = merge_test(preds, gt, cfg.VAL.VAL_PATCH_SIZE)
for i, fid in enumerate(frame_ids):
vid, img_id = fid.split('/')
pred = tensor2uint(pred[i, ...])
psnr, ssim = -1, -1
if gt is not None:
gt = tensor2uint(gt[i, ...])
ssim = metrics.calculate_ssim(pred, gt)
psnr = metrics.calculate_psnr(pred, gt)
# save img
# save statistic of each img
# if cfg.NUM_GPUS > 1:
# ssim = du.all_gather(ssim)
# psnr = du.all_gather(psnr)
# vid = du.all_gather(vid)
# img_id = du.all_gather(img_id)
# for i in range(cfg.NUM_GPUS):
# val_meter.log_img_result(vid[i], img_id[i], psnr[i], ssim[i])
# else:
val_meter.log_img_result(vid, img_id, psnr ,ssim)
val_meter.log_average_score(cur_epoch)
val_meter.reset()
return
@torch.no_grad()
def validation_epoch_center(val_loader, model, val_meter, cur_epoch, cfg):
"""
Evaluate model
"""
model.eval()
logger.info("Start validation")
# batch_size is fixed to 1 on each GPU
for inputs, gt, frame_ids in val_loader:
_, _, C, H, W = inputs.size()
inputs = inputs[:, :, :, H//2-320:H//2+320, W//2-320:W//2+320]
gt = gt[:, :, H//2-320:H//2+320, W//2-320:W//2+320]
# Transfer the data to the current GPU device.
inputs = inputs.contiguous()
gt = gt.contiguous()
if isinstance(inputs, (list,)):
for i in range(len(inputs)):
inputs[i] = inputs[i].cuda(non_blocking=True)
else:
inputs = inputs.cuda(non_blocking=True)
print(inputs.shape, flush=True)
if freq_mask is not None:
pred = model(inputs, freq_mask)
else:
pred = model(inputs)
# if isinstance(output, tuple):
# output = output[0]
for i, fid in enumerate(frame_ids):
vid, img_id = fid.split('/')
pred = tensor2uint(pred[i, ...])
psnr, ssim = -1, -1
if gt is not None:
gt = tensor2uint(gt[i, ...])
ssim = metrics.calculate_ssim(pred, gt)
psnr = metrics.calculate_psnr(pred, gt)
val_meter.log_img_result(vid, img_id, psnr ,ssim)
val_meter.log_average_score(cur_epoch)
val_meter.reset()
return
def train(cfg):
"""
Train a video model for many epochs on train set and evaluate it on val set.
Args:
cfg (CfgNode): configs. Details can be found in
slowfast/config/defaults.py
"""
# Setup logging format.
logging.setup_logging(logger, cfg)
# Print config.
logger.info("Train with config:")
logger.info(pprint.pformat(cfg))
# Build the video model and print model statistics.
model = model_builder.build_model(cfg)
if du.is_master_proc():
misc.log_model_info(model)
# Construct the optimizer.
optimizer = optim.construct_optimizer(model, cfg)
# Record global step
gs = 0
# Load a checkpoint to resume training if applicable.
if cfg.TRAIN.AUTO_RESUME and cu.has_checkpoint(cfg.OUTPUT_DIR):
logger.info("Load from last checkpoint.")
last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR)
gs, checkpoint_epoch = cu.load_checkpoint(
last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer
)
start_epoch = checkpoint_epoch + 1
elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "":
logger.info("Load from given checkpoint file.")
if cfg.TRAIN.LOAD_PART_OF_CHECKPOINT:
gs, checkpoint_epoch = cu.load_part_of_checkpoint(
cfg.TRAIN.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
optimizer=None
)
else:
gs, checkpoint_epoch = cu.load_checkpoint(
cfg.TRAIN.CHECKPOINT_FILE_PATH,
model,
cfg.NUM_GPUS > 1,
optimizer=None,
inflation=False,
convert_from_caffe2=False
)
start_epoch = checkpoint_epoch + 1
else:
gs = 0
start_epoch = 0
# Create the video train and val loaders.
train_loader = loader.construct_loader(cfg, "train")
val_loader = loader.construct_loader(cfg, "val")
# Create meters.
train_meter = TrainMeter(len(train_loader), cfg)
val_meter = ValMeter(cfg)
# Perform the training loop.
logger.info("Start epoch: {} gs {}".format(start_epoch + 1, gs+1))
for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH):
# Shuffle the dataset.
loader.shuffle_dataset(train_loader, cur_epoch)
# Evaluate the model on validation set.
if misc.is_eval_epoch(cfg, cur_epoch):
if cfg.TRAIN.USE_CENTER_VALIDATION:
validation_epoch_center(val_loader, model, val_meter, cur_epoch, cfg)
else:
validation_epoch(val_loader, model, val_meter, cur_epoch, cfg)
# Train for one epoch.
gs = train_epoch(train_loader, model, optimizer, train_meter, cur_epoch, gs, cfg)
# Compute precise BN stats.
# if cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0:
# calculate_and_update_precise_bn(
# train_loader, model, cfg.BN.NUM_BATCHES_PRECISE
# )
# Save a checkpoint.
if cu.is_checkpoint_epoch(cur_epoch, cfg.TRAIN.CHECKPOINT_PERIOD):
cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, gs, cfg)