Skip to content

Latest commit

 

History

History
54 lines (45 loc) · 1.89 KB

File metadata and controls

54 lines (45 loc) · 1.89 KB

EDAF70 - Applied Artificial Intelligence

Lund University (LTH) | VT1 2019

This is the repository for the EDAF70 - Tillämpad artificiell intelligens (Applied Artificial Intelligence) course given at Lunds Tekniska Högskola (LTH) during the Spring 2019 term.

Contents

The following topics are covered in the lab assignments:

  • Minimax adversarial search
  • Alpha-beta pruning
  • Evaluation functions
  • Robot localization
  • Hidden Markov Models (HMM)
  • Forward filtering
  • Machine Learning (ML)
  • Linear regression
  • Logisitic regression
  • Gradient descent
  • Linear discriminant functions
  • Perceptron algorithm
  • Cross validation
  • Natural Language Processing (NLP)

Other topics covered in the course lectures and reading material:

  • Agents
  • Search
  • Games
  • Probabilistic Representation and Reasoning
  • Probabilistic Reasoning Over Time
  • Logic and Knowledge Representation
  • Planning
  • Semantic Technology
  • Robotics
  • Ethics in AI

Material

Course literature:

  • Artificial Intelligence: A Modern Approach, 3/e, by Stuart Russell and Peter Norvig, ISBN-10: 0132071487 or 1292153962.

Other related literature:

  • Kevin P. Murphy: Machine Learning, A Probabilistic Perspective. MIT Press, 2012, ISBN: 9780262018029.
  • Sebastian Ruder: An overview of gradient descent optimization algorithms. http://arxiv.org/abs/1609.04747.

Lectures:

Other resources:

Companion code: