-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
232 lines (209 loc) · 7.91 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#include <benchmark/benchmark.h>
#include <memory>
#include <random>
#include <xsimd/xsimd.hpp>
#include <xtensor/xadapt.hpp>
#include <xtensor/xmath.hpp>
#include "ColumnarDatabase.hpp"
class DataElement {
public:
DataElement(float key, int filler1, int filler2, int filler3, int filler4, int filler5, int filler6, int filler7)
: key(key), filler1(filler1), filler2(filler2), filler3(filler3), filler4(filler4), filler5(filler5),
filler6(filler6), filler7(filler7) {};
float key;
int filler1;
int filler2;
int filler3;
int filler4;
int filler5;
int filler6;
int filler7;
};
static constexpr auto NumElements = 65536;
std::vector<std::unique_ptr<DataElement>> makeDataElements(int numElements) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<> dis(0);
std::vector<std::unique_ptr<DataElement>> dataElements;
for (int i = 0; i < numElements; i++) {
dataElements.emplace_back(std::make_unique<DataElement>(dis(gen), 1, 2, 3, 4, 5, 6, 7));
}
return dataElements;
}
std::vector<std::unique_ptr<DataElement>> makeDataElementsSorted(int numElements) {
auto elements = makeDataElements(numElements);
std::sort(elements.begin(), elements.end(), [](const auto &a, const auto &b) {
return a->key < b->key;
});
return elements;
}
std::vector<DataElement> makeDataElementsLocal(int numElements) {
auto elements = makeDataElements(numElements);
std::vector<DataElement> localElements;
for (auto &element : elements) {
localElements.emplace_back(element->key, element->filler1, element->filler2, element->filler3, element->filler4, element->filler5, element->filler6, element->filler7);
}
return localElements;
}
std::vector<DataElement> makeDataElementsLocalSorted(int numElements) {
auto elements = makeDataElementsLocal(numElements);
std::sort(elements.begin(), elements.end(), [](const auto &a, const auto &b) {
return a.key < b.key;
});
return elements;
}
Database<float, int, int, int, int, int, int, int> makeDataElementsColumnarSorted(int numElements) {
auto elements = makeDataElementsLocalSorted(numElements);
Database<float, int, int, int, int, int, int, int> database;
for (auto &element : elements) {
database.emplace(element.key, element.filler1, element.filler2, element.filler3, element.filler4, element.filler5, element.filler6, element.filler7);
}
return database;
}
Database<float, int, int, int, int, int, int, int> makeDataElementsColumnar(int numElements) {
auto elements = makeDataElementsLocal(numElements);
Database<float, int, int, int, int, int, int, int> database;
for (auto &element : elements) {
database.emplace(element.key, element.filler1, element.filler2, element.filler3, element.filler4, element.filler5, element.filler6, element.filler7);
}
return database;
}
static void naiveVersion(benchmark::State &state) {
auto elements = makeDataElements(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
if (element->key < 0.5) {
total += element->key;
}
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(naiveVersion)->Range(8, NumElements);
static void localVersion(benchmark::State &state) {
auto elements = makeDataElementsLocal(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
if (element.key < 0.5) {
total += element.key;
}
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(localVersion)->Range(8, NumElements);
static void columnarVersion(benchmark::State &state) {
auto elements = makeDataElementsColumnar(state.range(0));
auto &column = elements.getColumn<0>();
for (auto _ : state) {
float total = 0;
for (const auto element : column) {
if (element < 0.5) {
total += element;
}
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(columnarVersion)->Range(8, NumElements);
static void naiveSortedVersion(benchmark::State &state) {
auto elements = makeDataElementsSorted(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
if (element->key < 0.5) {
total += element->key;
}
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(naiveSortedVersion)->Range(8, NumElements);
static void naiveBranchlessVersion(benchmark::State &state) {
auto elements = makeDataElements(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
total += (element->key < 0.5) * element->key;
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(naiveBranchlessVersion)->Range(8, NumElements);
static void localSortedVersion(benchmark::State &state) {
auto elements = makeDataElementsLocalSorted(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
if (element.key < 0.5) {
total += element.key;
}
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(localSortedVersion)->Range(8, NumElements);
static void localBranchlessVersion(benchmark::State &state) {
auto elements = makeDataElementsLocal(state.range(0));
for (auto _ : state) {
float total = 0;
for (const auto &element : elements) {
total += (element.key < 0.5) * element.key;
}
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(localBranchlessVersion)->Range(8, NumElements);
static void columnarSortedVersion(benchmark::State &state) {
auto elements = makeDataElementsColumnarSorted(state.range(0));
auto &column = elements.getColumn<0>();
for (auto _ : state) {
auto end = std::find_if(column.begin(), column.end(), [](const auto &a) {
return a >= 0.5;
});
float total = std::accumulate(column.begin(), end, 0.f);
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(columnarSortedVersion)->Range(8, NumElements);
float sum(const float *begin, const float *end) {
constexpr auto simd_size = xsimd::simd_type<float>::size;
xsimd::batch<float, simd_size> result(0.f);
auto numElements = std::distance(begin, end);
auto vec_size = numElements - numElements % simd_size;
for (int i = 0; i < vec_size; i += simd_size) {
auto batch = xsimd::load_unaligned(begin + i);
result += batch;
}
return std::accumulate(result.begin(), result.end(), 0.f) + std::accumulate(begin + vec_size, end, 0.f);
}
static void columnarLibrarySimdSortedVersion(benchmark::State &state) {
auto elements = makeDataElementsColumnarSorted(state.range(0));
auto &column = elements.getColumn<0>();
for (auto _ : state) {
auto end = std::find_if(column.begin(), column.end(), [](const auto &a) {
return a >= 0.5;
});
auto numElements = std::distance(column.begin(), end);
std::array<std::size_t, 1> shape = {static_cast<unsigned long>(numElements)};
auto tensor = xt::adapt(column.data(), shape[0], xt::no_ownership(), shape);
float total = xt::sum(tensor)();
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(columnarLibrarySimdSortedVersion)->Range(8, NumElements);
static void columnarSimdSortedVersion(benchmark::State &state) {
auto elements = makeDataElementsColumnarSorted(state.range(0));
auto &column = elements.getColumn<0>();
for (auto _ : state) {
auto end = std::find_if(column.begin(), column.end(), [](const auto &a) {
return a >= 0.5;
});
float total = sum(column.data(), end.base());
benchmark::DoNotOptimize(total);
}
}
BENCHMARK(columnarSimdSortedVersion)->Range(8, NumElements);
BENCHMARK_MAIN();