-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdemo.m
85 lines (56 loc) · 2.88 KB
/
demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% This demo script allows you to train and evaluate our model in different setups.
% To run this script, you would first need to change the paths accordingly in the init_paths.m
% You should have loaded and unzip the pre-processed data from the website
% Check that you run populate_spatialfeats.m that computes the spatial features
% Refer to config.m to change the training/test options
%% Setup %%
startup();
opts = config();
%% Training %%
opts.split = 'train';
opts.supervision = 'weak';
opts.num_negatives = 0;
W = train(opts);
%% Evaluation : recall on Visual Relationship Dataset %%
fprintf('Evaluate recall on Visual Relationship Detection\n');
opts.split = 'test';
opts.use_languagescores = 0; % set to 1 to use the language scores
opts.Nre = 50; % k in recall@k
opts.zeroshot = 0; % set to 1 to evaluate on unseen triplets
% Predicate Detection
opts.dataset = 'vrd-dataset';
opts.candidatespairs = 'annotated'; % use groundtruth pairs
opts.use_objectscores = 0; % do not use object scores
[pairs, scores, annotations] = predict(W, opts);
[candidates, groundtruth] = format_testdata_recall(pairs, scores, annotations, opts);
[recall.predicate, ~] = top_recall_Relationship(opts.Nre, candidates, groundtruth); % call evaluation code of [31]
% Phrase/Relationship detection
opts.candidatespairs = 'Lu-candidates'; % use proposals of Lu16
opts.use_objectscores = 1; % use object scores
[pairs, scores, annotations] = predict(W, opts);
[candidates, groundtruth] = format_testdata_recall(pairs, scores, annotations, opts);
[recall.relationship, ~] = top_recall_Relationship(opts.Nre, candidates, groundtruth);
[recall.phrase, ~] = top_recall_Phrase(opts.Nre, candidates, groundtruth);
fprintf('R@%d for Predicate Detection : %.1f\n', opts.Nre, 100*recall.predicate);
fprintf('R@%d for Phrase Detection : %.1f\n', opts.Nre, 100*recall.phrase);
fprintf('R@%d for Relationship Detection : %.1f\n', opts.Nre, 100*recall.relationship);
%% Evaluation : retrieval of unusual relations on UnRel
fprintf('Evaluate retrieval on UnRel\n');
opts.split = 'test';
opts.use_languagescores = 0;
opts.use_objectscores = 0;
opts.IoUmode = 'union'; % choose 'union', 'subject, 'subject-object'
opts.candidatespairs = 'candidates'; opts.overlap = 0.3;
%opts.candidatespairs = 'gt-candidates'; opts.overlap = 1'; opts.IoUmode= 'subject-object'; %uncomment to
% evaluate with GT
% Compute scores on UnRel
opts.dataset = 'unrel-dataset';
[unrel.pairs, unrel.scores, unrel.annotations] = predict(W, opts);
% Compute scores on VRD
opts.dataset = 'vrd-dataset';
[vrd.pairs, vrd.scores, vrd.annotations] = predict(W, opts);
% Merge dataset
[pairs, scores, annotations] = merge_datasets_for_retrieval(unrel, vrd);
% Compute AP
[ap, ub] = evaluate_retrieval(pairs, scores, annotations, opts);
fprintf('mAP=%.1f\n', 100*mean(ap));