-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
583 lines (481 loc) · 25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import os
import gc
import time
import psutil
import argparse
import numpy as np
import pprint
import torch
import torchvision
import functools
import torch.optim as optim
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from torch.autograd import Variable
from models.vae.vrnn import VRNN
from models.vae.parallelly_reparameterized_vae import ParallellyReparameterizedVAE
from models.vae.sequentially_reparameterized_vae import SequentiallyReparameterizedVAE
from helpers.layers import EarlyStopping, Rotate, init_weights
from models.pool import train_model_pool
from models.saccade import Saccader
from datasets.loader import get_split_data_loaders, get_loader, simple_merger, sequential_test_set_merger
from datasets.utils import normalize_images
from optimizers.adamnormgrad import AdamNormGrad
from optimizers.adamw import AdamW
from optimizers.utils import decay_lr_every
from helpers.grapher import Grapher
from helpers.metrics import softmax_accuracy, bce_accuracy
from helpers.utils import same_type, ones_like, \
append_to_csv, num_samples_in_loader, expand_dims, \
dummy_context, register_nan_checks, network_to_half, \
number_of_parameters
parser = argparse.ArgumentParser(description='Variational Saccading')
# Task parameters
parser.add_argument('--uid', type=str, default="",
help="add a custom task-specific unique id; appended to name (default: None)")
parser.add_argument('--task', type=str, default="crop_dual_imagefolder",
help="""task to work on (can specify multiple) [mnist / cifar10 /
fashion / svhn_centered / svhn / clutter /
permuted / crop_dual_imagefolder] (default: crop_dual_imagefolder)""")
parser.add_argument('--epochs', type=int, default=2000, metavar='N',
help='minimum number of epochs to train (default: 2000)')
parser.add_argument('--download', type=int, default=1,
help='download dataset from s3 (default: 1)')
parser.add_argument('--data-dir', type=str, default='./.datasets', metavar='DD',
help='directory which contains input data')
parser.add_argument('--early-stop', action='store_true', default=False,
help='enable early stopping (default: False)')
# handle scaling of images and related imgs
parser.add_argument('--synthetic-upsample-size', type=int, default=0,
help="""size to upsample image before downsampling to
blurry version for synthetic problems (default: 0)""")
parser.add_argument('--synthetic-rotation', type=float, default=0,
help='rotate proxy image in degrees (default: 0 degrees)')
parser.add_argument('--max-image-percentage', type=float, default=0.3,
help='maximum percentage of the image to look over (default: 0.15)')
parser.add_argument('--window-size', type=int, default=32,
help='window size for saccades [becomes WxW] (default: 32)')
parser.add_argument('--crop-padding', type=int, default=6,
help='the extra padding around the crop for numerical diff (default: 6)')
parser.add_argument('--downsample-scale', type=int, default=5,
help='downscale the image by this scalar, eg: [100 // 5 , 100 // 5] (default: 5)')
# Model parameters
parser.add_argument('--activation', type=str, default='identity',
help='default activation function (default: identity)')
parser.add_argument('--latent-size', type=int, default=512, metavar='N',
help='sizing for latent layers (default: 256)')
parser.add_argument('--output-size', type=int, default=None,
help='output class size [optional: usually auto-discovered] (default: None)')
parser.add_argument('--add-img-noise', action='store_true',
help='add scattered noise to images (default: False)')
parser.add_argument('--filter-depth', type=int, default=32,
help='number of initial conv filter maps (default: 32)')
parser.add_argument('--reparam-type', type=str, default='beta',
help='isotropic_gaussian / discrete / beta / mixture / beta_mixture (default: beta)')
parser.add_argument('--encoder-layer-type', type=str, default='conv',
help='dense or conv (default: conv)')
parser.add_argument('--decoder-layer-type', type=str, default='conv',
help='dense or conv or pixelcnn (default: conv)')
parser.add_argument('--continuous-size', type=int, default=6,
help='continuous latent size (6/2 units of this are used for [s, x, y]) (default: 6)')
parser.add_argument('--discrete-size', type=int, default=10,
help='discrete latent size (only used for mix + disc) (default: 10)')
parser.add_argument('--nll-type', type=str, default='bernoulli',
help='bernoulli or gaussian (default: bernoulli)')
parser.add_argument('--vae-type', type=str, default='vrnn',
help='vae type [sequential / parallel / vrnn] (default: parallel)')
parser.add_argument('--disable-gated', action='store_true', default=False,
help='disables gated convolutional or dense structure (default: False)')
parser.add_argument('--disable-rnn-proj', action='store_true', default=False,
help='disables the rnn connection from to the concat of the crop-logits (default: False)')
parser.add_argument('--concat-prediction-size', type=int, default=0,
help='a value greater than 0 uses the concatenate based classifier (default: 0)')
parser.add_argument('--restore', type=str, default=None,
help='path to a model to restore (default: None)')
# RNN related
parser.add_argument('--use-prior-kl', action='store_true',
help='add a kl on the VRNN prior against the true prior (default: False)')
parser.add_argument('--use-noisy-rnn-state', action='store_true',
help='uses a noisy initial rnn state instead of zeros (default: False)')
parser.add_argument('--max-time-steps', type=int, default=4,
help='max time steps for RNN (default: 4)')
# Regularizer related
parser.add_argument('--continuous-mut-info', type=float, default=0,
help='-continuous_mut_info * I(z_c; x) is applied (opposite dir of disc)(default: 0.0)')
parser.add_argument('--discrete-mut-info', type=float, default=0,
help='+discrete_mut_info * I(z_d; x) is applied (default: 0.0)')
parser.add_argument('--mut-clamp-strategy', type=str, default="none",
help='clamp mut info by norm / clamp / none (default: none)')
parser.add_argument('--mut-clamp-value', type=float, default=100.0,
help='max / min clamp value if above strategy is clamp (default: 100.0)')
parser.add_argument('--monte-carlo-infogain', action='store_true',
help='use the MC version of mutual information gain / false is analytic (default: False)')
parser.add_argument('--mut-reg', type=float, default=0,
help='mutual information regularizer [mixture only] (default: 0)')
parser.add_argument('--kl-reg', type=float, default=1.0,
help='hyperparameter to scale KL term in ELBO')
parser.add_argument('--generative-scale-var', type=float, default=1.0,
help='scale variance of prior in order to capture outliers')
parser.add_argument('--conv-normalization', type=str, default='groupnorm',
help='normalization type: batchnorm/groupnorm/instancenorm/none (default: groupnorm)')
parser.add_argument('--dense-normalization', type=str, default='batchnorm',
help='normalization type: batchnorm/instancenorm/none (default: batchnorm)')
# Optimizer
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--lr', type=float, default=1e-4, metavar='LR',
help='learning rate (default: 1e-3)')
parser.add_argument('--optimizer', type=str, default="adam",
help="specify optimizer (default: adam)")
parser.add_argument('--clip', type=float, default=0,
help='gradient clipping for RNN (default: 0.25)')
# Visdom / tensorboard parameters
parser.add_argument('--visdom-url', type=str, default=None,
help='visdom URL for graphs (needs http, eg: http://localhost) (default: None)')
parser.add_argument('--visdom-port', type=int, default=None,
help='visdom port for graphs (default: None)')
# Device parameters
parser.add_argument('--detect-anomalies', action='store_true', default=False,
help='detect anomalies in the computation graph (default: False)')
parser.add_argument('--seed', type=int, default=None,
help='seed for numpy and pytorch (default: None)')
parser.add_argument('--ngpu', type=int, default=1,
help='number of gpus available (default: 1)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--half', action='store_true', default=False,
help='enables half precision training')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.backends.cudnn.benchmark = True
# handle randomness / non-randomness
if args.seed is not None:
print("setting seed %d" % args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed_all(args.seed)
# import FP16 optimizer and module
if args.half is True:
from apex import amp
from apex.fp16_utils import FP16_Optimizer
amp_handle = amp.init()
# Global counter
TOTAL_ITER = 0
def build_optimizer(model):
optim_map = {
"rmsprop": optim.RMSprop,
"adam": optim.Adam,
"adamnorm": AdamNormGrad,
"adamw": AdamW,
"adadelta": optim.Adadelta,
"sgd": optim.SGD,
"sgd_momentum": lambda params, lr : optim.SGD(params,
lr=lr,
weight_decay=1e-4,
momentum=0.9),
"lbfgs": optim.LBFGS
}
# filt = filter(lambda p: p.requires_grad, model.parameters())
# return optim_map[args.optimizer.lower().strip()](filt, lr=args.lr)
optimizer = optim_map[args.optimizer.lower().strip()](
model.parameters(), lr=args.lr
)
if args.half is True:
return FP16_Optimizer(optimizer, dynamic_loss_scale=True)
return optimizer
def register_plots(loss, grapher, epoch, prefix='train'):
''' helper to register all plots with *_mean and *_scalar '''
for k, v in loss.items():
if isinstance(v, map):
register_plots(loss[k], grapher, epoch, prefix=prefix)
if 'mean' in k or 'scalar' in k:
key_name = '-'.join(k.split('_')[0:-1])
value = v.item() if not isinstance(v, (float, np.float32, np.float64)) else v
grapher.add_scalar('{}_{}'.format(prefix, key_name), value, epoch)
def register_images(output_map, grapher, prefix='train'):
''' helper to register all plots with *_img and *_imgs
NOTE: only registers 1 image to avoid MILLION imgs in visdom,
consider adding epoch for tensorboardX though
'''
for k, v in output_map.items():
if isinstance(v, map):
register_images(output_map[k], grapher, epoch, prefix=prefix)
if 'img' in k or 'imgs' in k:
key_name = '-'.join(k.split('_')[0:-1])
grapher.add_image('{}_{}'.format(prefix, key_name),
v.detach(), global_step=0) # dont use step
def _add_loss_map(loss_tm1, loss_t):
''' helper to add two maps and keep counts
of the total samples for reduction later'''
if not loss_tm1: # base case: empty dict
resultant = {'count': 1}
for k, v in loss_t.items():
if 'mean' in k or 'scalar' in k:
if isinstance(v, torch.Tensor):
resultant[k] = v.clone().detach()
else:
resultant[k] = v
return resultant
resultant = {}
for (k, v) in loss_t.items():
if 'mean' in k or 'scalar' in k:
if isinstance(v, torch.Tensor):
resultant[k] = loss_tm1[k] + v.clone().detach()
else: resultant[k] = loss_tm1[k] + v
# increment total count
resultant['count'] = loss_tm1['count'] + 1
return resultant
def _mean_map(loss_map):
''' helper to reduce all values by the key count '''
for k in loss_map.keys():
loss_map[k] /= loss_map['count']
return loss_map
# create this once
rotator = Rotate(args.synthetic_rotation)
def generate_related(data, x_original, args):
# handle logic for crop-image-loader & multi-image-folder
if x_original is not None:
return x_original, data
# first downsample the image and then upsample it
# this creates a 'blurry' related image making the problem tougher
original_img_size = tuple(data.size()[-2:])
ds_img_size = tuple(int(i) for i in np.asarray(original_img_size)
// args.downsample_scale) # eg: [12, 12]
x_downsampled = F.interpolate(
F.interpolate(data, ds_img_size, mode='bilinear', align_corners=True), # blur the crap out
original_img_size, mode='bilinear', align_corners=True) # of the original data
x_upsampled = F.interpolate(data, (args.synthetic_upsample_size,
args.synthetic_upsample_size),
mode='bilinear', align_corners=True)
return x_upsampled, rotator(x_downsampled)
def _unpack_data_and_labels(item):
''' helper to unpack the data and the labels
in the presence of a lambda cropper '''
if isinstance(item[-1], list): # crop-dual loader logic
x_original, (x_related, label) = item
elif isinstance(item[0], list): # multi-imagefolder logic
assert len(item[0]) == 2, \
"multi-image-folder [{} #datasets] unpack > 2 datasets not impl".format(len(item[0]))
(x_related, x_original), label = item
else: # standard loader
x_related, label = item
x_original = None
return x_original, x_related, label
def cudaize(tensor, is_data_tensor=False):
if isinstance(tensor, list):
return tensor
if args.half is True and is_data_tensor:
tensor = tensor.half()
if args.cuda:
tensor = tensor.cuda()
return tensor
def execute_graph(epoch, model, data_loader, grapher, optimizer=None,
prefix='test', plot_mem=False):
''' execute the graph; when 'train' is in the name the model runs the optimizer '''
start_time = time.time()
model.eval() if not 'train' in prefix else model.train()
assert optimizer is not None if 'train' in prefix else optimizer is None
loss_map, num_samples = {}, 0
x_original, x_related = None, None
for item in data_loader:
# first destructure the data, cuda-ize and wrap in vars
x_original, x_related, labels = _unpack_data_and_labels(item)
x_related, labels = cudaize(x_related, is_data_tensor=True), cudaize(labels)
if 'train' in prefix: # zero gradients on optimizer
optimizer.zero_grad()
with torch.no_grad() if 'train' not in prefix else dummy_context():
with torch.autograd.detect_anomaly() if args.detect_anomalies else dummy_context():
x_original, x_related = generate_related(x_related, x_original, args)
x_original = cudaize(x_original, is_data_tensor=True)
# run the model and gather the loss map
output_map = model(x_original, x_related)
loss_t = model.loss_function(x_related, labels, output_map)
# compute accuracy and aggregate into map
accuracy_fn = softmax_accuracy if len(labels.shape) == 1 else bce_accuracy
loss_t['accuracy_mean'] = accuracy_fn(
F.softmax(output_map['preds'], -1),
labels, size_average=True
)
loss_map = _add_loss_map(loss_map, loss_t)
num_samples += x_related.size(0)
if 'train' in prefix: # compute bp and optimize
if args.half is True:
optimizer.backward(loss_t['loss_mean'])
# with amp_handle.scale_loss(loss_t['loss_mean'], optimizer,
# dynamic_loss_scale=True) as scaled_loss:
# scaled_loss.backward()
else:
loss_t['loss_mean'].backward()
if args.clip > 0:
# TODO: clip by value or norm? torch.nn.utils.clip_grad_value_
# torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) \
torch.nn.utils.clip_grad_value_(model.parameters(), args.clip) \
if not args.half is True else optimizer.clip_master_grads(args.clip)
optimizer.step()
del loss_t
loss_map = _mean_map(loss_map) # reduce the map to get actual means
correct_percent = 100.0 * loss_map['accuracy_mean']
print('{}[Epoch {}][{} samples][{:.2f} sec]:\
Average loss: {:.4f}\tKLD: {:.4f}\t\
NLL: {:.4f}\tAcc: {:.4f}'.format(
prefix, epoch, num_samples, time.time() - start_time,
loss_map['loss_mean'].item(),
loss_map['kld_mean'].item(),
loss_map['nll_mean'].item(),
correct_percent))
# gather scalar values of reparameterizers (if they exist)
reparam_scalars = model.vae.get_reparameterizer_scalars()
# add memory tracking
if plot_mem:
process = psutil.Process(os.getpid())
loss_map['cpumem_scalar'] = process.memory_info().rss * 1e-6
loss_map['cudamem_scalar'] = torch.cuda.memory_allocated() * 1e-6
# plot all the scalar / mean values
register_plots({**loss_map, **reparam_scalars}, grapher, epoch=epoch, prefix=prefix)
# plot images, crops, inlays and all relevant images
input_imgs_map = {'related_imgs': x_related, 'original_imgs': x_original}
imgs_map = model.get_imgs(x_related.size(0), output_map, input_imgs_map)
register_images(imgs_map, grapher, prefix=prefix)
# return this for early stopping
loss_val = {
'loss_mean': loss_map['loss_mean'].clone().detach().item(),
'pred_loss_mean': loss_map['pred_loss_mean'].clone().detach().item(),
'accuracy_mean': correct_percent
}
# delete the data instances, see https://tinyurl.com/ycjre67m
loss_map.clear(), input_imgs_map.clear(), imgs_map.clear()
output_map.clear(), reparam_scalars.clear()
del loss_map; del input_imgs_map; del imgs_map
del output_map; del reparam_scalars
del x_related; del x_original; del labels
gc.collect()
# return loss scalar map
return loss_val
def train(epoch, model, optimizer, loader, grapher, prefix='train'):
''' train loop helper '''
return execute_graph(epoch, model, loader,
grapher, optimizer, 'train',
plot_mem=True)
def test(epoch, model, loader, grapher, prefix='test'):
''' test loop helper '''
return execute_graph(epoch, model, loader,
grapher, prefix='test',
plot_mem=False)
def get_model_and_loader():
''' helper to return the model and the loader '''
aux_transform = None
if args.synthetic_upsample_size > 0 and args.task == "multi_image_folder":
aux_transform = lambda x: F.interpolate(torchvision.transforms.ToTensor()(x).unsqueeze(0),
size=(args.synthetic_upsample_size,
args.synthetic_upsample_size),
mode='bilinear', align_corners=True).squeeze(0)
# resizer = torchvision.transforms.Resize(size=(args.synthetic_upsample_size,
# args.synthetic_upsample_size))
loader = get_loader(args, transform=None, #transform=[resizer],
sequentially_merge_test=False,
aux_transform=aux_transform,
postfix="_large", **vars(args))
# append the image shape to the config & build the VAE
args.img_shp = loader.img_shp
vae = VRNN(loader.img_shp,
n_layers=2, # XXX: hard coded
#bidirectional=True, # XXX: hard coded
bidirectional=False, # XXX: hard coded
kwargs=vars(args))
# build the Variational Saccading module
# and lazy generate the non-constructed modules
saccader = Saccader(vae, loader.output_size, kwargs=vars(args))
lazy_generate_modules(saccader, loader.train_loader)
# FP16-ize, cuda-ize and parallelize (if requested)
saccader = saccader.fp16() if args.half is True else saccader
saccader = saccader.cuda() if args.cuda is True else saccader
saccader.parallel() if args.ngpu > 1 else saccader
# build the grapher object (tensorboard or visdom)
# and plot config json to visdom
if args.visdom_url is not None:
grapher = Grapher('visdom',
env=saccader.get_name(),
server=args.visdom_url,
port=args.visdom_port)
else:
grapher = Grapher('tensorboard', comment=saccader.get_name())
grapher.add_text('config', pprint.PrettyPrinter(indent=4).pformat(saccader.config), 0)
# register_nan_checks(saccader)
return [saccader, loader, grapher]
def lazy_generate_modules(model, loader):
''' Super hax, but needed for building lazy modules '''
model.eval()
model.config['half'] = False # disable half here due to CPU weights
for item in loader:
# first destructure the data and cuda-ize and wrap in vars
x_original, x_related, _ = _unpack_data_and_labels(item)
x_original, x_related = generate_related(x_related, x_original, args)
with torch.no_grad():
_ = model(x_original, x_related)
del x_original; del x_related
gc.collect()
break
# reset half tensors if requested since torch.cuda.HalfTensor has impls
model.config['half'] = args.half
# TODO: consider various initializations
# model = init_weights(model)
def generate(epoch, model, grapher, generate_every=10):
''' generate some synthetic samples ever generate_every epoch'''
if epoch % generate_every == 0:
# a few time details
start_time = time.time()
samples = model.generate(args.batch_size)
num_samples = len(samples) * np.prod(list(samples[0].shape))
print("generate[Epoch {}][{} samples][{} sec]".format(
epoch,
num_samples,
time.time() - start_time)
)
gen_map = {} # generate and place in map
for i, sample in enumerate(samples):
gen_map['samples{}_imgs'.format(i)] \
= F.interpolate(sample, (32, 32), mode='bilinear', align_corners=True)
register_images(gen_map, grapher, prefix="generated")
# XXX: memory cleanups
gen_map.clear()
del samples; gc.collect()
def scalar_map_to_csvs(scalar_map, prefix='test'):
''' iterates over map and writes all items with _mean or _scalar fields to csv'''
for k,v in scalar_map.items():
if 'mean' in k or 'scalar' in k:
append_to_csv([v], "{}_{}_{}.csv".format(args.uid, prefix, k))
def run(args):
# collect our model and data loader
model, loader, grapher = get_model_and_loader()
print("model has {} params".format(number_of_parameters(model)))
# collect our optimizer
optimizer = build_optimizer(model)
# train the VAE on the same distributions as the model pool
if args.restore is None:
print("training current distribution for {} epochs".format(args.epochs))
early = EarlyStopping(model, burn_in_interval=100, max_steps=80) if args.early_stop else None
test_map = {}
for epoch in range(1, args.epochs + 1):
generate(epoch, model, grapher)
train(epoch, model, optimizer, loader.train_loader, grapher)
test_map = test(epoch, model, loader.test_loader, grapher)
if args.early_stop and early(test_map['pred_loss_mean']):
early.restore() # restore and test again
test_map = test(epoch, model, loader.test_loader, grapher)
break
# adjust the LR if using momentum sgd
if args.optimizer == 'sgd_momentum':
decay_lr_every(optimizer, args.lr, epoch)
grapher.save() # save to endpoint after training
else:
assert model.load(args.restore), "Failed to load model"
test_loss, test_acc = test(epoch, model, loader.test_loader, grapher)
# evaluate one-time metrics
scalar_map_to_csvs(test_map)
# cleanups
grapher.close()
if __name__ == "__main__":
run(args)