-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagents.py
977 lines (796 loc) · 37.1 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
from player import *
import numpy as np
import random
import sys
import copy
# trueState = State(Rule(BASICVALUE, True), Rule(BASICSUIT, "S"), Rule(WILDVALUE, None), Rule(WILDSUIT, None))
class Agent(Player):
def __init__(self, name):
super(Player, self).__init__(name)
# implied self.hand, inherited from class Player
# return the card from your hand you want to play
def chooseCard(self, lastCard, aggressive=False):
pass #DO NOT CHANGE
# notified of an event in the game (a penalty, a success, or a win)
def notify(self, notification, game):
pass #DO NOT CHANGE
# change a rule via the makeModification function, which takes a "rule" tuple as its only argument
def modifyRule(self, makeModification):
return self.modifyRule_(makeModification)
# # choose an opponent index and a card to give an opponent
# # Note: don't remove the card. Just return it. The game will remove it
# # return a (targetIndex, unwantedCard) tuple.
def screwOpponent(self, playerList):
# instead of pass, we have a failsafe method
return self.screwOpponent_(playerList)
# this is how you know if the move you just made is legal or not
def getFeedback(self, isLegal):
pass # DO NOT CHANGE
## failsafe methods
def screwOpponent_(self, playerList):
targets = []
for i, player in enumerate(playerList):
if player.name != self.name:
targets.append(i)
if (len(targets) == 0):
print "this really shouldn't happen -- in screw opponent"
return (0, random.choice(self.hand)) #error checking
else:
return random.choice(targets), random.choice(self.hand)
def modifyRule_(self, makeModification):
ruletype = random.choice([BASICVALUE, WILDVALUE, WILDSUIT, POISONDIST, POISONCARD, SCREWOPPONENT, SKIPPLAYER])
#
if ruletype == BASICVALUE:
newGreater = random.choice([True, False])
rule = Rule(BASICVALUE, newGreater)
makeModification(rule)
elif ruletype == WILDVALUE or ruletype == POISONCARD or ruletype == SCREWOPPONENT or ruletype == SKIPPLAYER:
lst = [i + 2 for i in range(13)]
lst.append(None)
newValue = random.choice(lst)
rule = Rule(ruletype, newValue)
makeModification(rule)
elif ruletype == WILDSUIT:
newSuit = random.choice(["D", "H", "S", "C", None])
rule = Rule(WILDSUIT, newSuit)
makeModification(rule)
elif ruletype == POISONDIST:
lst = [1,2]
lst.append(None)
newValue = random.choice(lst)
rule = Rule(POISONDIST, newValue)
makeModification(rule)
class RandomAgent(Agent):
def __init__(self, name):
super(Agent, self).__init__(name)
self.wins = 0
self.roundLegals = 0
self.roundIllegals = 0
self.validPercentByRound = []
def notify(self, notification, game):
def newRound():
if self.roundIllegals + self.roundLegals == 0: return #don't divide by 0
self.validPercentByRound.append(float(self.roundLegals) / (self.roundIllegals + self.roundLegals) )
self.roundLegals = 0
self.roundIllegals = 0
if notification.type == WON: #corresponds to "won"
newRound()
def chooseCard(self, lastCard):
return self.hand[0]
# return random.choice([self.hand])
def getFeedback(self, isLegal):
if isLegal:
self.roundLegals += 1
else:
self.roundIllegals += 1
class HumanAgent(Agent):
def __init__(self, name):
super(Agent, self).__init__(name)
def chooseCard(self, lastCard, aggressive=False):
def showHand():
for index, card in enumerate(self.hand):
print "Index:", index, " -- ", card
while True:
# show your hand
if not aggressive:
print "the LAST CARD that was played was:", lastCard
print "your hand is: \n"
showHand()
if aggressive:
print "\nWhich card are you tryna stick your opponent with?"
else:
print "\ntype the index of the card you want to play: "
instr = raw_input()
if instr == "q":
print "quitting"
sys.exit()
try:
index = int(instr)
return self.hand[index]
except:
print "\n\n**INVALID SELECTION** Try again: \n\n"
def screwOpponent(self, playerList):
print "choose the opponent you want to screw over (by typing their index)"
for i, player in enumerate(playerList):
print "Index:", i, " -- ", player.name, "Tot cards: ", len(player.hand)
targetIndex = input()
unwantedCard = self.chooseCard(None, True)
return (targetIndex, unwantedCard)
def modifyRule(self, makeModification):
def getActiveValue():
print "type the value (from 2 to 14) you want to activate, or 0 to inactivate"
value = int(input())
if (value >= 2 and value <= 14):
return value
elif value == 0:
return None
else:
print "invalid -- try again"
try:
print "congrats, you get to change a rule! Please be precise"
print "type the rule you want to change:"
print " 1 for basicValue\n 3 for WildValue\n 4 for WildSuit \n 5 for PoisonDist"
print " 6 for PoisonCard\n 7 for ScrewOpponent\n 8 for SkipPlayer"
rule = int(input())
if rule == BASICVALUE:
print "type 0 to make lower cards have priority, and 1 to make higher cards have priority"
newGreater = int(input())
newGreater = False if newGreater == 0 else True
ruleTuple = Rule(BASICVALUE, newGreater)
makeModification(ruleTuple)
return
elif rule == WILDVALUE:
# print "type in a value between 2 and 14 to make that the new wild value"
# newValue = int(input())
newValue = getActiveValue()
ruleTuple = Rule(rule, newValue)
makeModification(ruleTuple)
return
elif rule == WILDSUIT:
while True:
print "type in S, D, C, or H to change your suit"
suit = raw_input().upper()
if len(suit) == 1 and suit in "SDCH":
ruleTuple = Rule(WILDVALUE, suit)
makeModification(ruleTuple)
return
else:
print "invalid character, try again"
elif rule == POISONDIST:
print "type 1 or 2 to make either 1 or 2 distance poisonous, and 0 to inactivate"
result = input()
if result == 0:
value = None
elif result == 1 or result == 2:
value = result
else:
print "invalid selection"
return
makeModification((Rule(POISONDIST, value)))
return
elif rule == POISONCARD or rule == SKIPPLAYER or rule == SCREWOPPONENT:
value = getActiveValue() #returns a value between 2-14 or None
makeModification(Rule(rule, value))
return
except:
print "invalid input -- continuing unchanged"
return
def notify(self, notification, game):
pass
class LearningAgent(Agent):
def __init__(self, name):
super(Agent, self).__init__(name)
self.wins = 0
self.roundLegals = 0
self.roundIllegals = 0
self.validPercentByRound = []
self.beliefs = Counter()
self.skipBelief = None
self.screwBelief = None
self.poisonBelief = None
for state in stateList:
self.beliefs[state] = 0
# return the card from your hand you want to play
def chooseCard(self, lastCard):
belief_state = self.beliefs.argMax()
legal_cards = []
c = Checker()
for index, card in enumerate(self.hand):
notification = Notification(LEGAL, card, lastCard)
if c.isConsistent(notification, belief_state):
legal_cards.append(card)
if len(legal_cards) != 0:
return random.choice(legal_cards)
else:
return random.choice(self.hand)
# notified of an event in the game (a penalty, a success, or a win)
def notify(self, notification, game):
# n = Notification(LEGAL, Card(4, "H"), Card(7, "D"))
def newRound():
if self.roundIllegals + self.roundLegals == 0: return #don't divide by 0
self.validPercentByRound.append(float(self.roundLegals) / (self.roundIllegals + self.roundLegals) )
self.roundLegals = 0
self.roundIllegals = 0
if notification.type in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
if notification.type == POISONCARD:
self.poisonBelief = notification.attemptedCard.value
elif notification.type == SCREWOPPONENT:
self.screwBelief = notification.attemptedCard.value
elif notification.type == SKIPPLAYER:
self.skipBelief = notification.attemptedCard.value
elif notification.type in [LEGAL, PENALTY, WON]:
if notification.type == LEGAL:
res = True
elif notification.type == PENALTY:
res = False
elif notification.type == WON: #corresponds to "won"
newRound()
return
states_agree = []
c = Checker()
for state in stateList:
# print notification
if c.isConsistent(notification, state) == res:
states_agree.append(state)
for state in stateList:
if state in states_agree:
self.beliefs[state] += 1.0 / len(states_agree)
else:
self.beliefs[state] = 0
self.beliefs.normalize()
else:
return
# this is how you know if the move you just made is legal or not
def getFeedback(self, isLegal):
if isLegal:
self.roundLegals += 1
else:
self.roundIllegals += 1
class HmmAgent(Agent):
def __init__(self, name):
super(Agent, self).__init__(name)
self.checker = Checker()
self.beliefDistrib = Counter()
self.inDangerOfSettingToNone = {}
self.believedEffectValues = {}
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
self.believedEffectValues[t] = None
self.inDangerOfSettingToNone[t] = False
# initialize list of states
initProb = 1 / float(len(stateList))
for s in stateList:
self.beliefDistrib[s] = initProb
# Init params for Data collection
self.numStates = []
self.notificationMatch = [0]
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
self.roundIllegals = 0
self.roundLegals = 0
self.validPercentByRound = []
def getCombinedState(self):
state = self.beliefDistrib.argMax()
poison = Rule(POISONCARD, self.getBelievedEffectValue(POISONCARD))
screw = Rule(SCREWOPPONENT, self.getBelievedEffectValue(SCREWOPPONENT))
skip = Rule(SKIPPLAYER, self.getBelievedEffectValue(SKIPPLAYER))
effectState = EffectState(poison, screw, skip)
return CombinedState(state, effectState)
def getBelievedEffectValue(self, effect):
return self.believedEffectValues[effect]
# return the card from your hand you want to play
def chooseCard(self, lastCard):
belief_state = self.beliefDistrib.argMax()
legal_cards = []
for index, card in enumerate(self.hand):
notification = Notification(LEGAL, card, lastCard)
if self.checker.isConsistent(notification, belief_state):
legal_cards.append(card)
# random strategy
# if len(legal_cards) != 0:
# return random.choice(legal_cards)
# else:
# return random.choice(self.hand)
# naive strategy
if len(legal_cards) != 0:
return random.choice(legal_cards)
else:
return random.choice(self.hand)
def getFeedback(self, isLegal):
if isLegal:
self.roundLegals += 1
else:
self.roundIllegals += 1
# notified of an event in the game (a penalty, a success, or a win)
def notify(self, notification, game):
if notification.type == WON:
try:
self.validPercentByRound.append(float(self.roundLegals) / (self.roundIllegals + self.roundLegals) )
except:
print "div by 0"
self.roundLegals = 0
self.roundIllegals = 0
youWon = 0
if notification.attemptedCard == self:
youWon = 1
self.notificationMatch.append(notification.type + youWon)
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
#reset
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
self.inDangerOfSettingToNone[t] = False
## super wacky -- we need know if we won the game, so we put "player" as "attemptedCard"
# immutable names is mostly great. Except when it isn't
if notification.attemptedCard == self:
return
# simulate dynamics -- occurs only on new round change
#naive dynamics: reset the list
# uniformProb = 1.0 / float(len(stateList))
# for state in stateList:
# self.beliefDistrib[state] = uniformProb # naive
# return
#complex dynamics:
# for each state with non-zero probability
# find successor states, and add them as possiblities. But weight towards current state
# then, renormalize the entire thing
# State = namedtuple('State', ['basicValueRule', 'wildValueRule', 'wildSuitRule', 'poisonDist'])
def isPossibleChild(stateA, stateB):
total = 0
for ruleA, ruleB in zip(stateA, stateB):
if ruleA.setting == ruleB.setting:
total += 1
if total >= 3:
return True
else:
return False
# get a list of states with non-zero probabilities
possiblePriorStates = []
for state in stateList:
if self.beliefDistrib[state] != 0:
possiblePriorStates.append(state)
newBeliefs = Counter()
pTransition = 1.0 / 25.0 * 4.0 / 7.0 # each state has 25 successors (2 + 15 + 3 + 5), and there is a 4/7 chance an effect was not chosen
for tMinusOne in possiblePriorStates:
newBeliefs[tMinusOne] += 3.0 / 7.0 * self.beliefDistrib[tMinusOne]
for successorState in stateList:
if isPossibleChild(successorState, tMinusOne):
newBeliefs[successorState] += pTransition
newBeliefs.normalize()
self.beliefDistrib = newBeliefs
return
elif notification.type in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
type = notification.type
# print "setting value of ", type
self.believedEffectValues[type] = notification.attemptedCard.value
self.inDangerOfSettingToNone[type] = False
elif notification.type in [LEGAL, PENALTY]:
self.notificationMatch.append(notification.type)
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
if notification.type == LEGAL:
res = True
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
# if we haven't received a notification when we were expecting it, set a notification to None
if self.inDangerOfSettingToNone[t]:
# print "dismayed", t
self.believedEffectValues[t] = None
# set up the expectation of an effect notification
v = self.believedEffectValues[t]
if v == notification.attemptedCard.value:
# print "we expect a notification", t
self.inDangerOfSettingToNone[t] = True
elif notification.type == PENALTY:
res = False
# update probabilities based on state dynamics
for state in stateList: #same thing as belief distribution
if self.beliefDistrib[state] == 0:
continue
else:
if self.checker.isConsistent(notification, state) == res:
continue
else:
self.beliefDistrib[state] = 0
self.beliefDistrib.normalize()
return
def modifyRule(self, makeModification):
ruletype = random.choice([BASICVALUE, WILDVALUE, WILDSUIT, POISONDIST, POISONCARD, SCREWOPPONENT, SKIPPLAYER])
#
if ruletype == BASICVALUE:
newGreater = random.choice([True, False])
rule = Rule(BASICVALUE, newGreater)
makeModification(rule)
elif ruletype == WILDVALUE or ruletype == POISONCARD or ruletype == SCREWOPPONENT or ruletype == SKIPPLAYER:
lst = [i + 2 for i in range(13)]
lst.append(None)
newValue = random.choice(lst)
rule = Rule(ruletype, newValue)
makeModification(rule)
elif ruletype == WILDSUIT:
newSuit = random.choice(["D", "H", "S", "C", None])
rule = Rule(WILDSUIT, newSuit)
makeModification(rule)
elif ruletype == POISONDIST:
lst = [1,2]
lst.append(None)
newValue = random.choice(lst)
rule = Rule(POISONDIST, newValue)
makeModification(rule)
newBeliefs = Counter()
if rule.rule == BASICVALUE:
for state in self.beliefDistrib:
state_val = self.beliefDistrib[state]
new_state = State(rule, state.wildValueRule, state.wildSuitRule, state.poisonDistRule)
newBeliefs[new_state] += state_val
elif rule.rule == WILDSUIT:
for state in self.beliefDistrib:
state_val = self.beliefDistrib[state]
new_state = State(state.basicValueRule, state.wildValueRule, rule, state.poisonDistRule)
newBeliefs[new_state] += state_val
elif rule.rule == POISONDIST:
for state in self.beliefDistrib:
state_val = self.beliefDistrib[state]
new_state = State(state.basicValueRule, state.wildValueRule, state.wildSuitRule, rule)
newBeliefs[new_state] += state_val
elif rule.rule == WILDVALUE:
for state in self.beliefDistrib:
state_val = self.beliefDistrib[state]
new_state = State(state.basicValueRule, rule, state.wildSuitRule, state.poisonDistRule)
newBeliefs[new_state] += state_val
elif rule.rule in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
### TODO #### Account for effect card distributions
# print rule.rule
self.believedEffectValues[rule.rule] = rule.setting
return
else:
### TODO #### Account for effect card distributions
return
# NONETYPE -- possible error here, need to return
newBeliefs.normalize()
self.beliefDistrib = newBeliefs
class HeuristicAgent(HmmAgent):
def __init__(self, name):
super(Agent, self).__init__(name)
self.checker = Checker()
self.beliefDistrib = Counter()
self.inDangerOfSettingToNone = {}
self.believedEffectValues = {}
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
self.believedEffectValues[t] = None
self.inDangerOfSettingToNone[t] = False
self.roundIllegals = 0
self.roundLegals = 0
self.validPercentByRound = []
# initialize list of states
initProb = 1 / float(len(stateList))
for s in stateList:
self.beliefDistrib[s] = initProb
self.numStates = []
self.notificationMatch = [0]
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
# a naive heuristic to judge the best card to play
def naiveHeuristic(self, legalCards, effects):
# basic progression of card strength from best to worst:
# ScrewOppponent Cards -> Skip Player Cards -> Lowest Value Legal Cards
if len(effects) == 3:
poisonValue = effects.poisonCardRule.setting
skipCard = effects.skipPlayerRule.setting
screwCard = effects.screwOpponentRule.setting
else:
poisonValue = 999
skipCard = 999
screwCard = 999
# if effects is malformed we can't easily pick a good card
cardvals = dict.fromkeys(legalCards, 0)
for card in legalCards:
if card.value == screwCard:
cardvals[card] += 3
for card in legalCards:
if card.value == skipCard:
cardvals[card] += 2
# Checks for smallest valued legal card & counts suits
smallestCard = 15
smallestIndex = 0
cardsuits = {'C':0,'D':0,'S':0,'H':0}
for indx, card in enumerate(legalCards):
cardsuits[card.suit] += 1
if card.value < smallestCard:
smallestCard = card.value
smallestIndex = indx
cardvals[legalCards[smallestIndex]] += 1
# once this is done cardsuits has all suits
maxKey = max(cardsuits, key=cardsuits.get)
for card in legalCards:
if card.suit == maxKey:
cardvals[card] += 0
return max(cardvals, key=cardvals.get)
# return the card from your hand you want to play
def chooseCard(self, lastCard):
combinedstate = self.getCombinedState()
belief_state = self.beliefDistrib.argMax()
legal_cards = []
for index, card in enumerate(self.hand):
notification = Notification(LEGAL, card, lastCard)
if self.checker.isConsistent(notification, combinedstate.state):
legal_cards.append(card)
# raturn random.choice(self.hand)
# naive strategy
if len(legal_cards) != 0:
return self.naiveHeuristic(legal_cards, combinedstate.effectState)
else:
return random.choice(self.hand)
# Card Counting Agent that plays expectimax type solution
class CardCounter(HmmAgent):
def __init__(self, name):
super(Agent, self).__init__(name)
self.checker = Checker()
self.beliefDistrib = Counter()
self.inDangerOfSettingToNone = {}
self.believedEffectValues = {}
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
self.believedEffectValues[t] = None
self.inDangerOfSettingToNone[t] = False
self.roundIllegals = 0
self.roundLegals = 0
self.validPercentByRound = []
# initialize list of states
initProb = 1 / float(len(stateList))
for s in stateList:
self.beliefDistrib[s] = initProb
self.numStates = []
self.notificationMatch = [0]
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
self.wonLast = 1
self.justShuffled = 0
self.discard = []
self.cardsAtLarge = []
self.opHandSize = len(self.hand)
self.cardBelief = {}
self.total_cards = []
for s in ["D", "H", "S", "C"]:
for v in range(2,15):
self.total_cards.append(Card(v,s))
self.cardBelief[Card(v,s)] = 0
# for card in self.cardsAtLarge:
# self.cardBelief[card] = self.opHandSize/len(self.cardsAtLarge)
# for card in self.hand:
# self.cardBelief[card] = 0
# TakeCard Method from Player Class to update when cards are in your hand
# def takeCard(self, card):
# if card != None:
# self.hand.append(card)
# # If taking a card, it is impossible for opponent to have same card
# self.cardBelief[card] = 0
# else:
# print "takeCard: no card drawn. This seems like trouble -- investigate"
def notify(self, notification, game):
if notification.type == WON:
try:
self.validPercentByRound.append(float(self.roundLegals) / (self.roundIllegals + self.roundLegals) )
except:
print "div by 0"
self.roundLegals = 0
self.roundIllegals = 0
#reset
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
self.inDangerOfSettingToNone[t] = False
youWon = 0
if notification.attemptedCard == self:
youWon = 1
self.notificationMatch.append(notification.type + youWon)
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
## super wacky -- we need know if we won the game, so we put "player" as "attemptedCard"
# immutable names is mostly great. Except when it isn't
if notification.attemptedCard == self:
return
# simulate dynamics -- occurs only on new round change
#naive dynamics: reset the list
# uniformProb = 1.0 / float(len(stateList))
# for state in stateList:
# self.beliefDistrib[state] = uniformProb # naive
# return
#complex dynamics:
# for each state with non-zero probability
# find successor states, and add them as possiblities. But weight towards current state
# then, renormalize the entire thing
# State = namedtuple('State', ['basicValueRule', 'wildValueRule', 'wildSuitRule', 'poisonDist'])
def isPossibleChild(stateA, stateB):
total = 0
for ruleA, ruleB in zip(stateA, stateB):
if ruleA.setting == ruleB.setting:
total += 1
if total >= 3:
return True
else:
return False
# get a list of states with non-zero probabilities
possiblePriorStates = []
for state in stateList:
if self.beliefDistrib[state] != 0:
possiblePriorStates.append(state)
newBeliefs = Counter()
pTransition = 1.0 / 25.0 * 4.0 / 7.0 # each state has 25 successors (2 + 15 + 3 + 5), and there is a 4/7 chance an effect was not chosen
for tMinusOne in possiblePriorStates:
newBeliefs[tMinusOne] += 3.0 / 7.0 * self.beliefDistrib[tMinusOne]
for successorState in stateList:
if isPossibleChild(successorState, tMinusOne):
newBeliefs[successorState] += pTransition
newBeliefs.normalize()
self.beliefDistrib = newBeliefs
elif notification.type in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
type = notification.type
# print "setting value of ", type
self.believedEffectValues[type] = notification.attemptedCard.value
self.inDangerOfSettingToNone[type] = False
elif notification.type in [LEGAL, PENALTY]:
self.notificationMatch.append(notification.type)
self.possibleStates = 0
for state in self.beliefDistrib:
if self.beliefDistrib[state] > 0:
self.possibleStates += 1
self.numStates.append(self.possibleStates)
if notification.type == LEGAL:
res = True
for t in [POISONCARD, SCREWOPPONENT, SKIPPLAYER]:
# if we haven't received a notification when we were expecting it, set a notification to None
if self.inDangerOfSettingToNone[t]:
# print "dismayed", t
self.believedEffectValues[t] = None
# set up the expectation of an effect notification
v = self.believedEffectValues[t]
if v == notification.attemptedCard.value:
# print "we expect a notification", t
self.inDangerOfSettingToNone[t] = True
elif notification.type == PENALTY:
res = False
# update probabilities based on state dynamics
for state in stateList: #same thing as belief distribution
if self.beliefDistrib[state] == 0:
continue
else:
if self.checker.isConsistent(notification, state) == res:
continue
else:
self.beliefDistrib[state] = 0
self.beliefDistrib.normalize()
if notification.type != NEWROUND:
if self.wonLast == 1:
self.discard = [notification.lastCard]
self.cardsAtLarge = []
self.opHandSize = 0
for player in game.players:
if player != self:
self.opHandSize += len(player.hand)
self.cardBelief = {}
self.cardBelief[notification.lastCard] = 0
for s in ["D", "H", "S", "C"]:
for v in range(2,15):
if Card(v,s) not in self.hand:
self.cardsAtLarge.append(Card(v,s))
self.cardsAtLarge.remove(notification.lastCard)
for card in self.cardsAtLarge:
self.cardBelief[card] = self.opHandSize/len(self.cardsAtLarge)
for card in self.hand:
self.cardBelief[card] = 0
self.wonLast = 0
####### WIN LOGIC ######
if notification.type == WON:
self.wonLast = 1
return
###### DECK RESET LOGIC #####
if notification.type == DECKRESET:
self.cardsAtLarge = copy.copy(self.discard)
self.discard = []
if game.players[game.activePlayer] != self:
# If opponent just played
cardPlayed = notification.attemptedCard
# if legal move played, card no longer in hand
if notification.type == LEGAL:
self.discard.append(cardPlayed)
if cardPlayed in self.cardsAtLarge:
self.cardsAtLarge.remove(cardPlayed)
self.cardBelief[cardPlayed] = 0
# if penalty, card returned to op hand
elif notification.type == PENALTY:
self.cardBelief[cardPlayed] = 1
if cardPlayed in self.cardsAtLarge:
self.cardsAtLarge.remove(cardPlayed)
#Case if you just played
else:
cardPlayed = notification.attemptedCard
if notification.type == LEGAL:
self.discard.append(cardPlayed)
for card in self.hand:
if card in self.cardsAtLarge:
self.cardsAtLarge.remove(card)
self.cardBelief[card] = 0
# Size of opponent hands combined
self.opHandSize = 0
for player in game.players:
if player != self:
self.opHandSize += len(player.hand)
spotsAtLarge = self.opHandSize
for card in self.cardBelief:
if self.cardBelief[card] > 0.99:
spotsAtLarge -= 1
if card in self.cardsAtLarge:
self.cardsAtLarge.remove(card)
for card in self.cardsAtLarge:
self.cardBelief[card] = spotsAtLarge / float(len(self.cardsAtLarge))
def screwOpponent(self, playerList):
targets = []
targetCards = []
for i, player in enumerate(playerList):
if player.name != self.name:
targets.append(i)
targetCards = len(player.hand)
if (len(targets) == 0):
print "this really shouldn't happen -- in screw opponent"
return (0, random.choice(self.hand)) #error checking
else:
giveCard = random.choice(self.hand)
giveTarget = targets[np.argmax(targetCards)]
self.cardBelief[giveCard] = 1
return giveTarget, giveCard
def chooseCard(self, lastCard):
belief_state = self.beliefDistrib.argMax()
legal_cards = []
for index, card in enumerate(self.hand):
notification = Notification(LEGAL, card, lastCard)
if self.checker.isConsistent(notification, belief_state):
legal_cards.append(card)
if len(legal_cards) != 0:
counterPlays = []
for card in legal_cards:
counterPlay = 0
for counterCard in self.total_cards:
if self.cardBelief[counterCard] > 0:
notification2 = Notification(LEGAL, counterCard, card)
if self.checker.isConsistent(notification, belief_state):
constant = 0
if self.believedEffectValues[SKIPPLAYER] == counterCard.value:
constant += 2
if self.believedEffectValues[POISONCARD] == counterCard.value:
constant -= 2
if self.believedEffectValues[SCREWOPPONENT] == counterCard.value:
constant += 2
counterPlay += 1*self.cardBelief[counterCard] *constant
counterPlays.append(counterPlay)
return legal_cards[np.argmin(counterPlays)]
else:
counterPlays = []
for card in self.hand:
counterPlay = 0
for counterCard in self.total_cards:
if self.cardBelief[counterCard] > 0:
notification2 = Notification(LEGAL, counterCard, card)
if self.checker.isConsistent(notification, belief_state):
constant = 0
if self.believedEffectValues[SKIPPLAYER] == counterCard.value:
constant += 2
if self.believedEffectValues[POISONCARD] == counterCard.value:
constant -= 2
if self.believedEffectValues[SCREWOPPONENT] == counterCard.value:
constant += 2
counterPlay += 1*self.cardBelief[counterCard]
counterPlays.append(counterPlay)
return self.hand[np.argmin(counterPlays)]