-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcore.mlw
114 lines (65 loc) · 2.65 KB
/
core.mlw
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
module Inductiveness
type world
val ghost constant initWorld : world
val ghost predicate indpred (w:world)
ensures { w = initWorld -> result }
val ghost predicate step (w1:world) (w2:world)
ensures { result -> indpred w1 -> indpred w2 }
(* many steps relation and reachable worlds *)
inductive step_TR world world =
| base : forall w :world. step_TR w w
| step : forall w w' w'' : world.
step_TR w w' -> step w' w'' -> step_TR w w''
lemma indpred_manySteps :
forall w w' :world. step_TR w w' -> indpred w -> indpred w'
predicate reachable (w:world) = step_TR initWorld w
lemma indpred_reachable :
forall w :world. reachable w -> indpred w
end
module RefinementPlus
type worldA
type worldC
val ghost function refn (worldC) : worldA
val ghost constant initWorldA : worldA
val ghost constant initWorldC : worldC
ensures { refn result = initWorldA }
val ghost predicate indpredA (w:worldA)
ensures { w = initWorldA -> result }
val ghost predicate indpredC (w:worldC)
ensures { w = initWorldC -> result }
val ghost predicate stepA (w1:worldA) (w2:worldA)
ensures { result -> indpredA w1 -> indpredA w2 }
(* Refinement of steps from worlds that satisfy the concrete invariant
*)
val ghost predicate stepC (w1:worldC) (w2:worldC)
ensures { result -> indpredC w1 -> indpredC w2 }
ensures { result -> indpredC w1 -> (* indpredC w2 -> *) refn w1 = refn w2 \/ stepA (refn w1) (refn w2) }
(* Reachability -- abstract
*)
inductive step_TR_A worldA worldA =
| baseA : forall w :worldA. step_TR_A w w
| stepA : forall w w' w'' : worldA.
step_TR_A w w' -> stepA w' w'' -> step_TR_A w w''
lemma indpred_manySteps_A :
forall w w' :worldA. step_TR_A w w' -> indpredA w -> indpredA w'
predicate reachableA (w:worldA) = step_TR_A initWorldA w
lemma indpred_reachable_A :
forall w :worldA. reachableA w -> indpredA w
(* Reachability -- concrete
*)
inductive step_TR_C worldC worldC =
| baseC : forall w :worldC. step_TR_C w w
| stepC : forall w w' w'' : worldC.
step_TR_C w w' -> stepC w' w'' -> step_TR_C w w''
lemma indpred_manySteps_C :
forall w w' :worldC. step_TR_C w w' -> indpredC w -> indpredC w'
predicate reachableC (w:worldC) = step_TR_C initWorldC w
(* lemma indpred_reachable_C : *)
(* forall w :worldC. reachableC w -> indpredC w *)
(* reachable worlds are abstracted to reachable worlds
*)
lemma reachable : forall w :worldC. reachableC w -> reachableA (refn w)
(* and abstract invariant holds in such worlds
*)
lemma invariance_refn : forall w :worldC. reachableC w -> indpredA (refn w)
end