forked from tfiers/kul-machine-learning-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_validator.py
238 lines (195 loc) · 5.54 KB
/
model_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import url_predictor as pred
import json
import os
from csv import *
from numpy import average,median
import matplotlib.pyplot as plt
def train_and_validate(csv_file_training,csv_file_validate,beta=1.1,max_len=12,alpha=0):
"""
"""
# Train the prediction model with the data from the training set
train_model(csv_file_training)
# Preprocess the data in the test set
pages = preprocess(csv_file_validate)
# Validate the model on the test data
# Returns a dictionary with the number of primary, secondary and tertiary
# predictions that were correct
validation = validate(pages,beta,max_len,alpha)
return validation
def validate(pages,beta=1.1,max_len=12,alpha=0):
"""
Expects a list of web pages representing a web session
Calculates the number of correct predictions
Returns a dictionary with the number of primary, secondary and tertiary
predictions that were correct
"""
print(len(pages))
# A dictionary for recording the number of correct predictions
validation = 0
distances = []
for i in range(len(pages)-1):
page = pages[i]
print("PAGE: " + "i:" + str(i) + " " + page)
predictions = pred.get_guesses(page,beta,max_len,alpha)
j = 0
maxJ = len(predictions)
found = False
while (not found) and (j < maxJ):
web_page = predictions[j]
for k in range(i+1,len(pages)-1):
if web_page == pages[k]:
validation += 1
distances.append(k-i)
print("\t WEB PAGE: " + str(j+1) + ": " + web_page + "\n")
found = True
break
j += 1
return [validation, own_average(distances), len(pages)]
def validate_directory(directory="data"):
"""
"""
prediction_dict = {}
users = {}
for file in os.listdir("./"+directory):
if file.endswith(".csv"):
s = file.split('_')
if s[0] not in users:
users[s[0]] = ["./"+directory+"/"+file]
else:
users[s[0]].append("./"+directory+"/"+file)
for user in users:
print(user)
result = validate_user(users[user])
prediction_dict[user] = [result[0],result[1],result[2]]
return prediction_dict
def validate_user(user_files):
"""
"""
valid_user_files = []
for file in user_files:
try:
pred.parse(open(file).readlines())
valid_user_files.append(file)
except:
pass
pred.clear_model()
prediction_list = []
distance_list = []
nb_pages = 0
for file in valid_user_files:
openfile = open(file).readlines()
nb_pages += len(openfile)
# The test data set is the last 30% of the total data set
test_data_start = int(round(0.7 * nb_pages))
nb_test_lines = 0
page_counter = 0
for file in valid_user_files:
print("VALID FILE: " + file)
openfile = open(file).readlines()
if len(openfile) > 0:
fraction = (test_data_start - page_counter) / len(openfile)
page_counter += len(openfile)
if fraction >= 1:
print("1111111")
pred.learn_from(open(file),1)
elif fraction > 0:
print("2222222")
pred.learn_from(open(file),fraction)
pages = preprocess(file,fraction)
nb_test_lines += len(pages)
result = validate(pages)
prediction_list.append(result[0])
distance_list.append(result[1])
else:
print("3333333")
pages = preprocess(file,0)
nb_test_lines += len(pages)
result = validate(pages)
prediction_list.append(result[0])
distance_list.append(result[1])
#print("PREDICTION LIST:" + str(prediction_list))
#print("DISTANCE LIST:" + str(distance_list))
return [sum(prediction_list), own_average(distance_list), nb_test_lines]
#### EXPERIMENTS ####
def experiment_beta(csv_file_training,csv_file_validate,minI,maxI):
lst = []
i = minI
while i < maxI:
result = train_and_validate(csv_file_training,csv_file_validate,i)
lst.append([i,result[0],result[1],result[2]])
i += 0.1
# matplotlib
xlist = []
ylist1 = []
ylist2 = []
for l in lst:
xlist.append(l[0])
ylist1.append(int(round(l[1]/l[3]*100)))
ylist2.append(l[2])
print(xlist)
print(ylist1)
accuracy = plt.plot(xlist,ylist1,'r',label='Accuracy (%)')
distance = plt.plot(xlist,ylist2,'b',label='Distance (nb clicks)')
plt.axis([0,10,0,28])
plt.legend()
plt.show()
return lst
def experiment_alpha(csv_file_training,csv_file_validate,minI,maxI):
lst = []
i = minI
while i < maxI:
result = train_and_validate(csv_file_training,csv_file_validate,1.1,12,i)
lst.append([i,result[0],result[1],result[2]])
i += 0.1
# matplotlib
xlist = []
ylist1 = []
ylist2 = []
for l in lst:
xlist.append(l[0]-1)
ylist1.append(int(round(l[1]/l[3]*100)))
ylist2.append(l[2])
print(xlist)
print(ylist1)
accuracy = plt.plot(xlist,ylist1,'r',label='Accuracy (%)')
distance = plt.plot(xlist,ylist2,'b',label='Distance (nb clicks)')
plt.axis([-1,9,0,25])
plt.legend()
plt.show()
return lst
#### UTILITY FUNCTIONS ####
def train_model(filename):
"""
"""
pred.clear_model()
pred.learn_from(open(filename))
def preprocess(filename,fraction=0):
"""
"""
# Read the csv file as a list of strings.
lines = open(filename, 'r').readlines()
# Make a list of 'event' dictionaries.
events = pred.parse(lines)
page_visits = pred.make_page_visits(events)
n = int(round(fraction*len(page_visits)))
pages = [page_visit['url'] for page_visit in page_visits[n:]]
return pages
def parse(lines):
"""
Expects a list of string with comma separated data.
Returns a list of url strings representing the sequence of web pages
"""
# List of web pages we'll return
pages = []
for line in lines:
# Parse the line as JSON.
# Add brackets to line so it is valid JSON.
data = json.loads('[{}]'.format(line))
# Add the url to the list of pages
pages.append(data[2])
return pages
def own_average(lst):
if len(lst) > 0:
return average(lst)
else:
return 0