-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPLUMES_algorithm.m
467 lines (329 loc) · 16.7 KB
/
PLUMES_algorithm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
%
%-------------------------------------------------------------------------%
% PLUMES algorithm
%
% Howdy PLUMES user
%
% The following function is fully described in Tavora et al., 2023 (DOI
% 10.3389/fmars.2023.1215327).
%
%-------------------------------------------------------------------------%
%
% you will need:
% - a satellite scene masked* (im variable),
% - lat/lon of satellite scene (lat and lon variables),
% - date of scene (date variable),
% - and chosen control points** (refer to Tavora et al., 2023 on how to choose control points)
%
% *land masked + and anything inward from the origin point of the
% plume masked as well, refer to examples available
%
% ** you will need to edit LAT/LON (rows 39 and 75)
%
% refer to Examples/ for application
%
%-------------------------------------------------------------------------%
% Juliana Tavora, 17/july/2023 (ITC, University of Twente)
%-------------------------------------------------------------------------%
function [PLUME_distal,PLUME_table_distal,PLUME_proximal,PLUME_table_proximal] = PLUMES_algorithm(date,im,lat,lon)
im_log = log10(im);
box_size = 4;
%-------------------------------------------------------------------------%
% get samples from estuary %
%-------------------------------------------------------------------------%
LAT = -32.1917; LON = -52.0729; %official coordinates
[seed_row, seed_col] = findClosestPixel(lon, lat, LON, LAT);
est_samples_coord = [seed_row,seed_col];
for i = 1:size(est_samples_coord,1)
est_samples(1:box_size+1,(i-1)*(box_size+1)+1:i*(box_size+1)) = ...
im(est_samples_coord(i,1)-box_size/2:est_samples_coord(i,1)+box_size/2,...
est_samples_coord(i,2)-box_size/2:est_samples_coord(i,2)+box_size/2);
end
est_samples = reshape(est_samples,[],1);
est_samples_nan = sum(isnan(est_samples))/((box_size+1)*(box_size+1).*size(est_samples_coord,1));
if round(est_samples_nan,2) <= 0.35 %percentage of acceptable NaNs
m_est = nanmedian(est_samples); m_est_log = nanmedian(log10(est_samples)); %median of all samples for estuary
v_est = std(est_samples,'omitnan'); v_est_log = nanvar(log10(est_samples));
else
m_est = NaN;
v_est = NaN;
PLUME_distal = im.*NaN;
PLUME_proximal = im.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('Percentage of NaNs is above limit: %d', round(est_samples_nan,2)); % Does this work as expected?! %fprintf('Done\n')
return
end
%-------------------------------------------------------------------------%
% get samples from marine water %
%-------------------------------------------------------------------------%
LAT = [-32.1003 -32.3771 -32.3840]; LON = [-51.7958 -51.8076 -51.9521];
for ii=1:size(LAT,2)
[row(ii), column(ii)] = findClosestPixel(lon, lat, LON(ii), LAT(ii));
end
mar_samples_coord = [row', column'];
for i = 1:size(mar_samples_coord,1)
mar_samples(1:box_size+1,(i-1)*(box_size+1)+1:i*(box_size+1)) = ...
im(mar_samples_coord(i,1)-box_size/2:mar_samples_coord(i,1)+box_size/2,...
mar_samples_coord(i,2)-box_size/2:mar_samples_coord(i,2)+box_size/2);
end
mar_samples = reshape(mar_samples,[],1);
mar_samples_nan = sum(isnan(mar_samples))/((box_size+1)*(box_size+1).*size(mar_samples_coord,1));
if round(mar_samples_nan,2) <= 0.35 %percentage of acceptable NaNs
m_mar = nanmedian(mar_samples); m_mar_log = nanmedian(log10(mar_samples));
v_mar = std(mar_samples,'omitnan'); v_mar_log = nanvar(log10(mar_samples)); %variance of all samples of marine waters
else
m_mar = NaN;
v_mar = NaN;
PLUME_distal = im.*NaN;
PLUME_proximal = im.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('Percentage of NaNs is above limit: %d', round(mar_samples_nan,2)); % Does this work as expected?! %fprintf('Done\n')
return
end
if m_mar >= m_est
PLUME_distal = im.*NaN;
PLUME_proximal = im.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('No plume detected'); % Does this work as expected?! %fprintf('Done\n')
return
end
%-------------------------------------------------------------------------%
% phase II %
%-------------------------------------------------------------------------%
if exist('PLUME_distal','var') ==0
%-------------------------------------------------------------------------%
% start segmentation (distal) %
%-------------------------------------------------------------------------%
[lin, col] = size(im);
scene = zeros(lin,col);
for i = 1:lin
for j = 1:col
if ~isnan(im(i,j)) == 1
S_est = ((im(i,j) - (m_est))^2)/(v_est); %measure of similarity of pixel (i,j) with estuarine water
S_mar = ((im(i,j) - (m_mar))^2)/(v_mar); %measure of similarity of pixel (i,j) with marine water
if m_est > m_mar
if (S_est < S_mar) %minimun difference %originally was <
scene(i,j) = 1; %estuarine samples
else
scene(i,j) = 0; %marine samples
end
else
scene(i,j) = 0; %marine samples
end
else
scene(i,j) = 0; %land or cloud
end
end
end
%-------------------------------------------------------------------------%
% start segmentation (proximal = core) %
%-------------------------------------------------------------------------%
scene_log = zeros(lin,col);
for i = 1:lin
for j = 1:col
if ~isnan(im_log(i,j)) == 1
S_est_log = ((im_log(i,j) - (m_est_log))^2)/(v_est_log); %measure of similarity of pixel (i,j) with estuarine water
S_mar_log = ((im_log(i,j) - (m_mar_log))^2)/(v_mar_log); %measure of similarity of pixel (i,j) with marine water
if m_est_log > m_mar_log
if (S_est_log < S_mar_log) %minimun difference %originally was <
scene_log(i,j) = 1; %estuarine samples
else
scene_log(i,j) = 0; %marine samples
end
else
scene_log(i,j) = 0; %marine samples
end
else
scene_log(i,j) = 0; %land or cloud
end
end
end
%-------------------------------------------------------------------------%
% morphological operations %
%-------------------------------------------------------------------------%
pixel_center = scene(seed_row,seed_col);
if pixel_center ~= 0
%-------------------------outer limit-----------------------------%
PLUME_distal = reggrow(scene,seed_row,seed_col);
%smoothing segmented boundary
se = strel('disk',3); PLUME_distal = imclose(PLUME_distal,se);
%Fill holes.
PLUME_distal = imfill(PLUME_distal, 'holes');
% get boundaries
boundaries = bwboundaries(PLUME_distal); % Get list of (x,y) coordinates of outer perimeter.
for k = 1:size(boundaries,1)
h = roipoly(PLUME_distal,boundaries{k,1}(:,2),boundaries{k,1}(:,1));
index(k) = h(seed_row,seed_col);
if index(k) ==1
%get LON/LAT of boundary
plume_contour_distal = bound2coord(boundaries{k,1}, lon, lat);
PLUME_distal = roipoly(PLUME_distal,boundaries{k,1}(:,2),boundaries{k,1}(:,1));
%smoothing segmented boundary
se = strel('disk',3); PLUME_distal = imclose(PLUME_distal,se);
break
end
end
%-------------------------------------------------------------------------------------------------------%
% table of stats (distal plume)
%-------------------------------------------------------------------------------------------------------%
se = strel('octagon',3);
BW2 = imdilate(PLUME_distal,se);
stats_plume = regionprops('table',BW2,'Centroid','Area','MajorAxisLength','MinorAxisLength','Orientation');
SPM = im.*PLUME_distal; SPM(SPM == 0) = NaN;
stats_SPM = array2table([nanmin(SPM(:)), nanmax(SPM(:)), nanmean(SPM(:)),nanmedian(SPM(:)),std(SPM(:),'omitnan'),m_est,v_est,m_mar,v_mar],...
'VariableNames',{'Min SPM plume','Max SPM plume','Mean','Median SPM plume','Stdev SPM plume','control point origin (mean SPM)','control point origin (stdev SPM)',...
'control point marine (mean SPM)','control point marine (stdev SPM)'});
date = table(datetime(date,'Format','dd.MM.yyyy'),'VariableNames',{'dd.mm.yyyy'});
PLUME_table_distal = [date, stats_plume, stats_SPM];
clear BW2 stats_plume stats_SPM SPM
%-------------------------------------------------------------------------------------------------------%
if sum(index) <1
PLUME_distal = scene.*NaN;
PLUME_proximal = scene.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('No plume detected!'); % Does this work as expected?! %fprintf('Done\n')
return
end
clear boundaries
%-------------------------inner limit-----------------------------%
% the core of the plume (proximal) must be whithin the distal plume limits.
% we first check if the plume core is located in the origin of the
% of the plume. otherwise, we search for the location of highest
% turbidity values whithin the segmented proximal plume
scene_log = PLUME_distal.*scene_log;
pixel_center = scene_log(seed_row,seed_col);
if pixel_center == 0
%find highest turbidity whithin distal plume limits
B = ones(4,4)/4^2;
C = conv2(scene_log.*im_log,B,'same');
[~,c] = (max(C,[],'all','linear'));
[seed_row,seed_col] = ind2sub(size(C),c); %clear C c B
end
PLUME_proximal = reggrow(scene_log,seed_row,seed_col);
%smoothing segmented boundary
se = strel('disk',3); PLUME_proximal = imclose(PLUME_proximal,se);
PLUME_proximal = imfill(PLUME_proximal, 'holes'); % Fill holes.
% get boundaries
boundaries = bwboundaries(PLUME_proximal); % Get list of (x,y) coordinates of outer perimeter.
for k = 1:size(boundaries,1)
h = roipoly(PLUME_distal,boundaries{k,1}(:,2),boundaries{k,1}(:,1));
index(k) = h(seed_row,seed_col);
if index(k) ==1
%get LON/LAT of boundary
plume_contour_proximal = bound2coord(boundaries{k,1}, lon, lat);
PLUME_proximal = roipoly(PLUME_proximal,boundaries{k,1}(:,2),boundaries{k,1}(:,1));
%smoothing segmented boundary
se = strel('disk',3); PLUME_proximal = imclose(PLUME_proximal,se);
break
end
end
%-------------------------------------------------------------------------------------------------------%
% table of stats (proximal plume)
%-------------------------------------------------------------------------------------------------------%
se = strel('octagon',3);
BW2 = imdilate(PLUME_proximal,se);
stats_plume = regionprops('table',BW2,'Centroid','Area','MajorAxisLength','MinorAxisLength','Orientation');
SPM = im_log.*PLUME_proximal; SPM(SPM == 0) = NaN; SPM = 10.^SPM;
stats_SPM = array2table([nanmin(SPM(:)), nanmax(SPM(:)), nanmean(SPM(:)),nanmedian(SPM(:)),std(SPM(:),'omitnan'),10.^m_est_log,10.^v_est_log,10.^m_mar_log,10.^v_mar_log],...
'VariableNames',{'Min SPM plume','Max SPM plume','Mean','Median SPM plume','Stdev SPM plume','control point origin (mean SPM)','control point origin (stdev SPM)',...
'control point marine (mean SPM)','control point marine (stdev SPM)'});
PLUME_table_proximal = [date, stats_plume, stats_SPM];
clear BW2 stats_plume stats_SPM SPM
%-------------------------------------------------------------------------------------------------------%
if sum(index) <1
PLUME_distal = scene.*NaN;
PLUME_proximal = scene.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('No plume detected!');
end
%-----------------------------------------------------------------%
else
PLUME_distal = scene.*NaN;
PLUME_proximal = scene.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('No plume detected!');
end
else
PLUME_distal = scene.*NaN;
PLUME_proximal = scene.*NaN;
plume_contour_distal = [NaN,NaN];
plume_contour_proximal = [NaN,NaN];
fprintf('No plume detected!');
end
end
function PLUME = reggrow(I,x,y)
% This function performs "region growing" in asegmented image from a specified
% seed-pixel (x,y)
%
% PLUME = reggrow(I,x,y)
%
% I : input segmented image
% PLUME : logical output image of region (PLUME estimated region)
% x,y : the position of the seed-pixel
% Based on function by D. Kroon, University of Twente
% (%https://nl.mathworks.com/matlabcentral/fileexchange/19084-region-growing)
% Adapted by Juliana Tavora, University of Twente
Isizes = size(I); %size of the image
PLUME = zeros(Isizes); %output
reg_mean = I(x,y); % The mean of the segmented region (inicializado com valor do pixel semente)
reg_size = 1; %number of pixels in region
% Free memory to store neighbours of the (segmented) region
neg_free = 10000;
neg_pos = 0;
neg_list = zeros(neg_free,2);
pixdist = 1; % Distance of the region newest pixel to the regio mean
neighbor = [-1 0; 1 0; 0 -1;0 1]; % Neighbor locations (footprint)
while(pixdist && reg_size < numel(I))
for j = 1:4 %pointer for the neighboring pixels
%get neighor pxel of pixel seed
xn = x + neighbor(j,1);
yn = y + neighbor(j,2);
%simple check if pixel position still inside the image
check= (xn>=1) && (yn>=1 )&& (xn <= Isizes(1)) && (yn <= Isizes(2));
if(check && (PLUME(xn,yn) == 0) && I(xn,yn) == 1) %check if it belongs to the thresholding boundary and if not set yet on the image we want to recreate
neg_pos = neg_pos+1;
neg_list(neg_pos,:) = [xn yn]; % add the new pixel
PLUME(xn,yn)=1;
end
end
%add new block of free memory
if (neg_pos + 10 > neg_free)
neg_free = neg_free + 10000;
neg_list((neg_pos+1):neg_free,:) = 0;
end
PLUME(x,y) = 2;
reg_size=reg_size+1;
% Save the x and y coordinates of the pixel (for the neighbour add proccess)
x = neg_list(1,1);
y = neg_list(1,2);
% Remove the pixel from the neighbour (check) list
if neg_pos > 0
neg_list(1,:) = neg_list(neg_pos,:);
neg_pos = neg_pos - 1;
end
if neg_pos == 0
pixdist = 0;
end
end
PLUME=PLUME>1;
end
function [plume_contour] = bound2coord(boundaries, lon, lat)
LON = []; LAT = [];
for jj = 1:size(boundaries,1)
long(jj) = lon(boundaries(jj,1),boundaries(jj,2));
lati(jj) = lat(boundaries(jj,1),boundaries(jj,2));
end
LON = [LON; long']; clear long
LAT = [LAT; lati']; clear lati
plume_contour = [LON, LAT];
end
function [row, column] = findClosestPixel(lon, lat, LON, LAT)
minDist = [abs(lon - LON) + abs(lat - LAT)];
[row, column] = find(minDist == min(abs(minDist(:))));
end