From b8ef30e3b8a83276ff2493f378049e34d2d58c2b Mon Sep 17 00:00:00 2001 From: odow Date: Mon, 30 Jan 2023 13:34:40 +1300 Subject: [PATCH 1/2] [docs] add more conic examples for MOI cones --- docs/src/tutorials/conic/tips_and_tricks.jl | 137 +++++++++++++------- 1 file changed, 91 insertions(+), 46 deletions(-) diff --git a/docs/src/tutorials/conic/tips_and_tricks.jl b/docs/src/tutorials/conic/tips_and_tricks.jl index 4d6f1aa6627..690d6e48d7a 100644 --- a/docs/src/tutorials/conic/tips_and_tricks.jl +++ b/docs/src/tutorials/conic/tips_and_tricks.jl @@ -49,7 +49,7 @@ nothing # hide # A good resource for learning more about functions which can be modeled # using cones is the [MOSEK Modeling Cookbook](https://docs.mosek.com/modeling-cookbook/index.html). -# ## What is a cone? +# ## Background theory # A subset $C$ of a vector space $V$ is a cone if $\forall x \in C$ and positive # scalars $\lambda > 0$, the product $\lambda x \in C$. @@ -57,8 +57,6 @@ nothing # hide # A cone $C$ is a convex cone if $\lambda x + (1 - \lambda) y \in C$, for any # $\lambda \in [0, 1]$, and any $x, y \in C$. -# ## What is a conic program? - # Conic programming problems are convex optimization problems in which a convex # function is minimized over the intersection of an affine subspace and a convex # cone. An example of a conic-form minimization problems, in the primal form is: @@ -85,65 +83,63 @@ nothing # hide # ## Second-Order Cone -# The Second-Order Cone (or Lorentz Cone) of dimension $n$ is of the form: +# The [`SecondOrderCone`](@ref) (or Lorentz Cone) of dimension $n$ is a cone of +# the form: # ```math -# Q^n = \{ (t, x) \in \mathbb{R}^n : t \ge ||x||_2 \} +# K_{soc} = \{ (t, x) \in \mathbb{R}^n : t \ge ||x||_2 \} # ``` -# ### Example - -# Minimize the L2 norm of a vector $x$. +# It is most commonly used to represent the L2-norm of the vector $x$: -model = Model() +model = Model(SCS.Optimizer) +set_silent(model) @variable(model, x[1:3]) -@variable(model, norm_x) -@constraint(model, [norm_x; x] in SecondOrderCone()) -@objective(model, Min, norm_x) +@variable(model, t) +@constraint(model, sum(x) == 1) +@constraint(model, [t; x] in SecondOrderCone()) +@objective(model, Min, t) +optimize!(model) +value(t), value.(x) # ## Rotated Second-Order Cone # A Second-Order Cone rotated by $\pi/4$ in the $(x_1,x_2)$ plane is called a -# Rotated Second-Order Cone. It is of the form: +# [`RotatedSecondOrderCone`](@ref). It is a cone of the form: # ```math -# Q_r^n = \{ (t,u,x) \in \mathbb{R}^n : 2tu \ge ||x||_2^2, t,u \ge 0 \} +# K_{rsoc} = \{ (t,u,x) \in \mathbb{R}^n : 2tu \ge ||x||_2^2, t,u \ge 0 \} # ``` -# ### Example - -# Given a set of predictors $x$, and observations $y$, find the parameter -# $\theta$ that minimizes the sum of squares loss between $y_i$ and -# $\theta x_i$. +# When `u = 0.5`, it represents the sum of squares of a vector $x$: -x = [1.0, 2.0, 3.0, 4.0] -y = [0.45, 1.04, 1.51, 1.97] -model = Model() +data = [1.0, 2.0, 3.0, 4.0] +target = [0.45, 1.04, 1.51, 1.97] +model = Model(SCS.Optimizer) +set_silent(model) @variable(model, θ) -@variable(model, loss) -@constraint(model, [loss; 0.5; θ .* x .- y] in RotatedSecondOrderCone()) -@objective(model, Min, loss) +@variable(model, t) +@variable(model, u == 0.5) +@expression(model, residuals, θ * data .- target) +@constraint(model, [t; u; residuals] in RotatedSecondOrderCone()) +@objective(model, Min, t) +optimize!(model) +value(θ), value(t) # ## Exponential Cone -# An Exponential Cone is a set of the form: +# The [`MOI.ExponentialCone`](@ref) is a set of the form: # ```math # K_{exp} = \{ (x,y,z) \in \mathbb{R}^3 : y \exp (x/y) \le z, y > 0 \} # ``` -model = Model() -@variable(model, x[1:3] >= 0) -@constraint(model, x in MOI.ExponentialCone()) -@objective(model, Min, x[3]) - -# ### Example: Entropy Maximization - -# The entropy maximization problem consists of maximizing the entropy function, +# It can be used to model problems involving `log` and `exp`. For example, the +# entropy maximization problem consists of maximizing the entropy function, # $H(x) = -x\log{x}$ subject to linear inequality constraints. # ```math # \begin{aligned} # & \max & - \sum_{i=1}^n x_i \log x_i \\ -# & \;\;\text{s.t.} & \mathbf{1}' x = 1 \\ +# & \;\;\text{s.t.} & \mathbf{1}^\top x = 1 \\ # & & Ax \leq b # \end{aligned} # ``` @@ -166,11 +162,8 @@ model = Model() # \end{aligned} # ``` -n = 15 -m = 10 -A = randn(m, n) -b = rand(m, 1) - +m, n = 10, 15 +A, b = randn(m, n), rand(m, 1) model = Model(SCS.Optimizer) set_silent(model) @variable(model, t[1:n]) @@ -178,14 +171,54 @@ set_silent(model) @objective(model, Max, sum(t)) @constraint(model, sum(x) == 1) @constraint(model, A * x .<= b) -@constraint(model, con[i = 1:n], [t[i], x[i], 1] in MOI.ExponentialCone()) +@constraint(model, [i = 1:n], [t[i], x[i], 1] in MOI.ExponentialCone()) optimize!(model) +objective_value(model) + +# The [`MOI.ExponentialCone`](@ref) has a dual, the [`MOI.DualExponentialCone`](@ref), +# that offers an alternative formulation that can be more efficient for some +# formulations. -#- +# There is also the [`MOI.RelativeEntropyCone`](@ref) for explicitly encoding +# the relative entropy function +model = Model(SCS.Optimizer) +set_silent(model) +@variable(model, t) +@variable(model, x[1:n]) +@objective(model, Max, -t) +@constraint(model, sum(x) == 1) +@constraint(model, A * x .<= b) +@constraint(model, [t; ones(n); x] in MOI.RelativeEntropyCone(2n+1)) +optimize!(model) objective_value(model) -# ### Positive Semidefinite Cone +# ## PowerCone + +# The [`MOI.PowerCone`](@ref) is a three-dimensional set parameterized by a +# scalar value `α`. It has the form: +# ```math +# K_{p} = \{ (x,y,z) \in \mathbb{R}^3 : x^{\alpha} y^{1-\alpha} \ge |z|, x \ge 0, y \ge 0 \} +# ``` + +# The power cone permits a number of reformulations. For example, when ``p > 1``, +# we can model ``t \ge x^p`` using the power cone ``(t, 1, x)`` with +# ``\alpha = 1 / p``. Thus, to model ``t \ge x^3`` with ``x \ge 0`` + +model = Model(SCS.Optimizer) +set_silent(model) +@variable(model, t) +@variable(model, x >= 1.5) +@constraint(model, [t, 1, x] in MOI.PowerCone(1 / 3)) +@objective(model, Min, t) +optimize!(model) +value(t), value(x) + +# The [`MOI.PowerCone`](@ref) has a dual, the [`MOI.DualPowerCone`](@ref), +# that offers an alternative formulation that can be more efficient for some +# formulations. + +# ## Positive Semidefinite Cone # The set of positive semidefinite matrices (PSD) of dimension $n$ form a cone # in $\mathbb{R}^n$. We write this set mathematically as: @@ -221,12 +254,24 @@ set_silent(model) @variable(model, t) @objective(model, Min, t) @constraint(model, t .* I - A in PSDCone()) - optimize!(model) +objective_value(model) -#- +# ## GeometricMeanCone -objective_value(model) +# The [`MOI.GeometricMeanCone`](@ref) is a cone of the form: +# ```math +# K_{geo} = \{ (t, x) \in \mathbb{R}^n : x \ge 0, t \le \sqrt[n-1]{x_1 x_2 \cdots x_{n-1}} \} +# ``` + +model = Model(SCS.Optimizer) +set_silent(model) +@variable(model, x[1:4]) +@variable(model, t) +@constraint(model, sum(x) == 1) +@constraint(model, [t; x] in MOI.GeometricMeanCone(5)) +optimize!(model) +value(t), value.(x) # ## Other Cones and Functions From b8eb5a1b1ee281b8ed680f1386ec24ea19292c8b Mon Sep 17 00:00:00 2001 From: odow Date: Mon, 30 Jan 2023 13:38:31 +1300 Subject: [PATCH 2/2] Fix formatting --- docs/src/tutorials/conic/tips_and_tricks.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/src/tutorials/conic/tips_and_tricks.jl b/docs/src/tutorials/conic/tips_and_tricks.jl index 690d6e48d7a..f6f576d5c9d 100644 --- a/docs/src/tutorials/conic/tips_and_tricks.jl +++ b/docs/src/tutorials/conic/tips_and_tricks.jl @@ -189,7 +189,7 @@ set_silent(model) @objective(model, Max, -t) @constraint(model, sum(x) == 1) @constraint(model, A * x .<= b) -@constraint(model, [t; ones(n); x] in MOI.RelativeEntropyCone(2n+1)) +@constraint(model, [t; ones(n); x] in MOI.RelativeEntropyCone(2n + 1)) optimize!(model) objective_value(model)