-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmodel.py
523 lines (458 loc) · 22.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
import numpy as np
import tensorflow as tf
import tensorflow.contrib.rnn as rnn
import math
act_fn = tf.nn.elu
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def he_initializer(fan_in, uniform=False, factor=2, seed=None):
def _initializer(shape, dtype=None, partition_info=None):
n = fan_in
if uniform:
# To get stddev = math.sqrt(factor / n) need to adjust for uniform.
limit = math.sqrt(3.0 * factor / n)
return tf.random_uniform(shape, -limit, limit, dtype, seed=seed)
else:
# To get stddev = math.sqrt(factor / n) need to adjust for truncated.
trunc_stddev = math.sqrt(1.3 * factor / n)
return tf.truncated_normal(shape, 0.0, trunc_stddev, dtype, seed=seed)
return _initializer
def flatten(x):
if x.get_shape().ndims > 2:
return tf.reshape(x, [-1, np.prod(x.get_shape().as_list()[1:])])
return x
def conv2d(x, num_filters, name, filter_size=(3, 3), stride=(1, 1), pad="SAME", dtype=tf.float32, collections=None, init="he"):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters]
if init != "he":
fan_in = np.prod(filter_shape[:3])
fan_out = np.prod(filter_shape[:2]) * num_filters
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape, dtype,
tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections)
else:
fan_in = np.prod(filter_shape[:3])
w = tf.get_variable("W", filter_shape, dtype, he_initializer(fan_in),
collections=collections)
b = tf.get_variable("b", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0),
collections=collections)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def linear(x, size, name, initializer=None, bias_init=0):
w = tf.get_variable(name + "/w", [x.get_shape()[1], size], initializer=initializer)
b = tf.get_variable(name + "/b", [size], initializer=tf.constant_initializer(bias_init))
return tf.matmul(x, w) + b
def categorical_sample(logits, d):
value = tf.squeeze(tf.multinomial(logits - tf.reduce_max(logits, [1], keep_dims=True), 1), [1])
return tf.one_hot(value, d)
def transform_fc(x, a, n_actions, name, bias_init=0, pad="SAME"):
if x.shape.ndims > 2:
x = flatten(x)
xdim = int(x.get_shape()[1])
w = tf.get_variable(name + "/w", [n_actions, xdim],
initializer=normalized_columns_initializer(0.1))
if a is not None:
# Transform only for the given action
mul = x * w[tf.to_int32(tf.squeeze(tf.argmax(a, axis=1))), :]
else:
# Enumerate all possible actions and concatenate them
transformed = []
for i in range(0, n_actions):
transformed.append(x * w[i, :])
mul = pack(tf.concat(transformed, 1), [xdim])
h = linear(mul, xdim, name + "_dec",
initializer=normalized_columns_initializer(0.1), bias_init=bias_init)
return act_fn(h)
def transform_conv_state(x, a, n_actions, filter_size=(3, 3), pad="SAME"):
# 3x3 option-conv -> 3x3 conv * 1x1 mask (with residual connection)
stride_shape = [1, 1, 1, 1]
dec_f_size = filter_size[0]
num_filters = int(x.get_shape()[3])
xdim = [int(x.get_shape()[1]), int(x.get_shape()[2]), num_filters]
filter_shape = [filter_size[0], filter_size[1], num_filters, n_actions, num_filters]
fan_in = np.prod(filter_shape[:3])
dec_filter_shape = [dec_f_size, dec_f_size, num_filters, num_filters]
w = tf.get_variable("W", filter_shape, initializer=he_initializer(fan_in))
b = tf.get_variable("b", [1, 1, 1, n_actions, num_filters],
initializer=tf.constant_initializer(0.0))
w_dec = tf.get_variable("dec1-W", dec_filter_shape,
initializer=he_initializer(fan_in))
b_dec = tf.get_variable("dec1-b", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0))
w_dec2 = tf.get_variable("dec2-W", dec_filter_shape,
initializer=he_initializer(fan_in))
b_dec2 = tf.get_variable("dec2-b", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0))
w_gate = tf.get_variable("gate-W", [1, 1, num_filters, num_filters],
initializer=he_initializer(num_filters))
b_gate = tf.get_variable("gate-b", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0))
if a is not None:
idx = tf.to_int32(tf.squeeze(tf.argmax(a, axis=1)))
conv = tf.nn.conv2d(x, w[:, :, :, idx, :], stride_shape, pad) + b[:, :, :, idx, :]
conv = act_fn(conv)
else:
w = tf.reshape(w, [filter_size[0], filter_size[1], num_filters, n_actions * num_filters])
b = tf.reshape(b, [1, 1, 1, n_actions * num_filters])
conv = act_fn(tf.nn.conv2d(x, w, stride_shape, pad) + b)
conv = pack(tf.transpose(tf.reshape(conv,
[-1, xdim[0], xdim[1], n_actions, num_filters]),
[0, 3, 1, 2, 4]), xdim)
conv = act_fn(tf.nn.conv2d(conv, w_dec, stride_shape, pad) + b_dec)
gate = tf.sigmoid(tf.nn.conv2d(conv, w_gate, stride_shape, pad) + b_gate)
conv = tf.nn.conv2d(conv, w_dec2, stride_shape, pad) + b_dec2
if a is not None:
conv = conv * gate + x
else:
conv = tf.transpose(tf.reshape(conv, [-1, n_actions] + xdim), [1, 0, 2, 3, 4])
gate = tf.transpose(tf.reshape(gate, [-1, n_actions] + xdim), [1, 0, 2, 3, 4])
conv = conv * gate + x
conv = pack(tf.transpose(conv, [1, 0, 2, 3, 4]), xdim)
return act_fn(conv)
def transform_conv_pred(x, a, n_actions, filter_size=(3, 3), pad="SAME"):
# 3x3 option-conv -> 3x3 conv
stride_shape = [1, 1, 1, 1]
dec_f_size = filter_size[0]
num_filters = int(x.get_shape()[3])
xdim = [int(x.get_shape()[1]), int(x.get_shape()[2]), num_filters]
filter_shape = [filter_size[0], filter_size[1], num_filters, n_actions, num_filters]
fan_in = np.prod(filter_shape[:3])
fan_out = np.prod(filter_shape[:2]) * num_filters
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable("W", filter_shape,
initializer=tf.random_uniform_initializer(-w_bound, w_bound))
b = tf.get_variable("b", [1, 1, 1, n_actions, num_filters],
initializer=tf.constant_initializer(0.0))
w_dec = tf.get_variable("W-dec", [dec_f_size, dec_f_size, num_filters, num_filters],
initializer=tf.random_uniform_initializer(-w_bound, w_bound))
b_dec = tf.get_variable("b-dec", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0))
if a is not None:
idx = tf.to_int32(tf.squeeze(tf.argmax(a, axis=1)))
conv = tf.nn.conv2d(x, w[:, :, :, idx, :], stride_shape, pad) + b[:, :, :, idx, :]
conv = act_fn(conv)
else:
w = tf.reshape(w, [filter_size[0], filter_size[1], num_filters, n_actions * num_filters])
b = tf.reshape(b, [1, 1, 1, n_actions * num_filters])
conv = act_fn(tf.nn.conv2d(x, w, stride_shape, pad) + b)
conv = pack(tf.transpose(tf.reshape(conv,
[-1, xdim[0], xdim[1], n_actions, num_filters]),
[0, 3, 1, 2, 4]), xdim)
conv = tf.nn.conv2d(conv, w_dec, stride_shape, pad) + b_dec
return act_fn(conv)
def pack(x, dim):
return tf.reshape(x, [-1] + dim)
def to_value(x, dim=256, initializer=None, bias_init=0):
if x.shape.ndims == 2: # fc layer
return linear(x, 1, "v", initializer=initializer, bias_init=bias_init)
else: # conv layer
x = act_fn(linear(flatten(x), dim, "v1",
initializer=tf.contrib.layers.xavier_initializer(), bias_init=bias_init))
return linear(x, 1, "v", initializer=initializer, bias_init=bias_init)
def to_pred(x, dim=256, initializer=None, bias_init=0):
return linear(flatten(x), dim, "p", initializer=initializer, bias_init=bias_init)
def to_reward(x, dim=256, initializer=None, bias_init=0):
x = act_fn(linear(flatten(x), dim, "r1",
initializer=tf.contrib.layers.xavier_initializer(), bias_init=bias_init))
return linear(x, 1, "r", initializer=initializer, bias_init=bias_init)
def to_steps(x, dim=256, initializer=None, bias_init=0):
x = act_fn(linear(flatten(x), dim, "t1",
initializer=tf.contrib.layers.xavier_initializer(), bias_init=bias_init))
return linear(x, 1, "t", initializer=initializer, bias_init=bias_init)
def rollout_step(x, a, n_actions, op_trans_state, op_trans_pred,
op_value, op_steps, op_reward, gamma=0.98):
state = op_trans_state(x, a)
p = op_trans_pred(x, a)
if a is not None:
v_next = op_value(state)
r = op_reward(p)
t = op_steps(p)
else:
v_next = pack(op_value(state), [n_actions])
r = pack(op_reward(p), [n_actions])
t = pack(op_steps(p), [n_actions])
t = tf.nn.relu(t) + 1
g = tf.pow(tf.constant(gamma), t)
return r, g, t, v_next, state
def predict_over_time(x, a, n_actions, op_rollout, prediction_step=5):
time_steps = tf.shape(a)[0]
xdim = x.get_shape().as_list()[1:]
def _create_ta(name, dtype, size, clear=True):
return tf.TensorArray(dtype=dtype,
size=size, tensor_array_name=name,
clear_after_read=clear)
v_ta = _create_ta("output_v", x.dtype, time_steps)
r_ta = _create_ta("output_r", x.dtype, time_steps)
g_ta = _create_ta("output_g", x.dtype, time_steps)
t_ta = _create_ta("output_t", x.dtype, time_steps)
q_ta = _create_ta("output_q", x.dtype, time_steps)
s_ta = _create_ta("output_s", x.dtype, time_steps)
x_ta = _create_ta("input_x", x.dtype, time_steps).unstack(x)
a_ta = _create_ta("input_a", x.dtype, time_steps).unstack(a)
time = tf.constant(0, dtype=tf.int32)
roll_step = tf.minimum(prediction_step, time_steps)
state = tf.zeros([roll_step] + xdim)
def _time_step(time, r_ta, g_ta, t_ta, v_ta, q_ta, s_ta, state):
a_t = a_ta.read(time)
a_t = tf.expand_dims(a_t, 0)
# stack previously generated states with the new state through batch
x_t = x_ta.read(time)
x_t = tf.expand_dims(x_t, 0)
state = tf.concat([x_t, tf.slice(state, [0] * (len(xdim) + 1),
[roll_step-1] + xdim)], 0)
r, gamma, t, v_next, state = op_rollout(state, a_t)
q = r + gamma * v_next
r_ta = r_ta.write(time, tf.reshape(r, [-1]))
g_ta = g_ta.write(time, tf.reshape(gamma, [-1]))
t_ta = t_ta.write(time, tf.reshape(t, [-1]))
v_ta = v_ta.write(time, tf.reshape(v_next, [-1]))
q_ta = q_ta.write(time, tf.reshape(q, [-1]))
s_ta = s_ta.write(time, state)
return (time+1, r_ta, g_ta, t_ta, v_ta, q_ta, s_ta, state)
_, r_ta, g_ta, t_ta, v_ta, q_ta, s_ta, state = tf.while_loop(
cond=lambda time, *_: time < time_steps,
body=_time_step,
loop_vars=(time, v_ta, r_ta, g_ta, t_ta, q_ta, s_ta, state))
r = r_ta.stack()
g = g_ta.stack()
t = t_ta.stack()
v = v_ta.stack()
q = q_ta.stack()
s = s_ta.stack()
return r, g, t, v, q, s
class Model(object):
def __init__(self, ob_space, n_actions, type,
gamma=0.99, prediction_step=1,
dim=256,
f_num=[32,32,64],
f_stride=[1,1,2],
f_size=[3,3,4],
f_pad="SAME",
branch=[4,4,4],
meta_dim=0):
self.n_actions = n_actions
self.type = type
self.x = tf.placeholder(tf.float32, [None] + list(ob_space))
self.a = tf.placeholder(tf.float32, [None, n_actions])
self.meta = tf.placeholder(tf.float32, [None, meta_dim]) if meta_dim > 0 else None
self.state_init = []
self.state_in = []
self.state_out = []
self.dim = dim
self.f_num = f_num
self.f_stride = f_stride
self.f_size = f_size
self.f_pad = f_pad
self.meta_dim = meta_dim
self.xdim = list(ob_space)
self.branch = [min(n_actions, k) for k in branch]
self.s, self.state_in, self.state_out = self.build_model(self.x, self.meta)
self.sdim = self.s.get_shape().as_list()[1:]
# output layer
if self.type == 'policy':
self.logits = linear(flatten(self.s), n_actions, "action",
normalized_columns_initializer(0.01))
self.vf = tf.reshape(linear(flatten(self.s), 1, "value",
normalized_columns_initializer(1.0)), [-1])
self.sample = categorical_sample(self.logits, n_actions)[0, :]
elif self.type == 'q':
h = transform_conv_state(self.s, None, n_actions)
self.h = linear(flatten(h), self.dim, "fc",
normalized_columns_initializer(0.01))
self.q = pack(linear(self.h, 1, "action",
normalized_columns_initializer(0.01)), [n_actions])
self.sample = tf.one_hot(tf.squeeze(tf.argmax(self.q, axis=1)), n_actions)
self.qmax = tf.reduce_max(self.q, axis=[1])
elif self.type == 'vpn':
self.op_value = tf.make_template('v', to_value, dim=self.dim,
initializer=normalized_columns_initializer(0.01))
self.op_reward = tf.make_template('r', to_reward, dim=self.dim,
initializer=normalized_columns_initializer(0.01))
self.op_steps = tf.make_template('t', to_steps, dim=self.dim,
initializer=normalized_columns_initializer(0.01))
self.op_trans_state = tf.make_template('trans_state', transform_conv_state,
n_actions=n_actions)
self.op_trans_pred = tf.make_template('trans_pred', transform_conv_pred,
n_actions=n_actions)
self.op_rollout = tf.make_template('rollout', rollout_step,
n_actions=n_actions,
op_trans_state=self.op_trans_state,
op_trans_pred=self.op_trans_pred,
op_value=self.op_value,
op_steps=self.op_steps,
op_reward=self.op_reward,
gamma=gamma)
# Unconditional rollout
self.r, self.gamma, self.steps, self.v_next, self.state = self.op_rollout(self.s, None)
self.q = self.r + self.gamma * self.v_next
# Action-conditional rollout over time for training
self.r_a, self.gamma_a, self.t_a, self.v_next_a, self.q_a, self.states = \
predict_over_time(self.s, self.a, n_actions, self.op_rollout,
prediction_step=prediction_step)
# Tree expansion/backup
depth = len(self.branch)
q_list = []
r_list = []
g_list = []
v_list = []
idx_list = []
s_list = []
s = self.s
# Expansion
for i in range(depth):
r, gamma, _, v, s = self.op_rollout(s, None)
r_list.append(tf.squeeze(r))
v_list.append(tf.squeeze(v))
s_list.append(s)
g_list.append(tf.squeeze(gamma))
b = self.branch[i]
q_list.append(r_list[i] + g_list[i] * v_list[i])
q_list[i] = tf.reshape(q_list[i], [-1, self.n_actions])
_, idx = tf.nn.top_k(q_list[i], k=b)
idx_list.append(idx)
l = tf.tile(tf.expand_dims(tf.range(0, tf.shape(idx)[0]), 1), [1, b])
l = tf.concat([tf.reshape(l, [-1, 1]), tf.reshape(idx, [-1, 1])], axis=1)
s = tf.reshape(tf.gather_nd(
tf.reshape(s, [-1, self.n_actions] + self.sdim), l), [-1] + self.sdim)
r_list[i] = tf.reshape(tf.gather_nd(
tf.reshape(r_list[i], [-1, self.n_actions]), l), [-1])
g_list[i] = tf.reshape(tf.gather_nd(
tf.reshape(g_list[i], [-1, self.n_actions]), l), [-1])
v_list[i] = tf.reshape(tf.gather_nd(
tf.reshape(v_list[i], [-1, self.n_actions]), l), [-1])
self.q_list = q_list
self.r_list = r_list
self.g_list = g_list
self.v_list = v_list
self.s_list = s_list
self.idx_list = idx_list
# Backup
v_plan = [None] * depth
q_plan = [None] * depth
v_plan[-1] = v_list[-1]
for i in reversed(range(0, depth)):
q_plan[i] = r_list[i] + g_list[i] * v_plan[i]
if i > 0:
q_max = tf.reduce_max(tf.reshape(q_plan[i], [-1, self.branch[i]]), axis=1)
n = float(depth - i)
v_plan[i-1] = (v_list[i-1] + q_max * n) / (n + 1)
idx = tf.squeeze(idx_list[0])
self.q_deep = tf.squeeze(q_plan[0])
self.q_plan = tf.sparse_to_dense(idx, [self.n_actions], self.q_deep,
default_value=-100, validate_indices=False)
self.x_off = tf.placeholder(tf.float32, [None] + list(ob_space))
self.a_off = tf.placeholder(tf.float32, [None, n_actions])
self.meta_off = tf.placeholder(tf.float32, [None, self.meta_dim]) \
if self.meta_dim > 0 else None
tf.get_variable_scope().reuse_variables()
self.s_off, self.state_in_off, self.state_out_off = \
self.build_model(self.x_off, self.meta_off)
# Action-conditional rollout over time for training
self.r_off, self.gamma_off, self.t_off, self.v_next_off, _, _ = \
predict_over_time(self.s_off, self.a_off, n_actions, self.op_rollout,
prediction_step=prediction_step)
else:
raise ValueError('Invalid model type %s' % (self.type))
self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)
self.num_param = 0
for v in self.var_list:
self.num_param += v.get_shape().num_elements()
def is_recurrent(self):
return self.state_in is not None and len(self.state_in) > 0
def get_initial_features(self):
return self.state_init
def act(self, ob, state_in=[], meta=None):
sess = tf.get_default_session()
feed_dict = {self.x: [ob]}
for i in range(len(state_in)):
feed_dict[self.state_in[i]] = state_in[i]
if self.meta_dim > 0:
feed_dict[self.meta] = [meta]
if self.type == 'policy':
return sess.run([self.sample, self.vf] + self.state_out, feed_dict)
elif self.type == 'q':
return sess.run([self.sample] + self.state_out, feed_dict)
elif self.type == 'vpn':
out = sess.run([self.q_plan] + self.state_out, feed_dict)
q = out[0]
state_out = out[1:]
act = np.zeros_like(q)
act[q.argmax()] = 1
return [act] + state_out
def update_state(self, ob, state_in=[], meta=None):
sess = tf.get_default_session()
feed_dict = {self.x: [ob]}
for i in range(len(state_in)):
feed_dict[self.state_in[i]] = state_in[i]
if self.meta_dim > 0:
feed_dict[self.meta] = [meta]
return sess.run(self.state_out, feed_dict)
def value(self, ob, state_in=[], meta=None):
sess = tf.get_default_session()
feed_dict = {self.x: [ob]}
for i in range(len(state_in)):
feed_dict[self.state_in[i]] = state_in[i]
if self.meta_dim > 0:
feed_dict[self.meta] = [meta]
if self.type == 'policy':
return sess.run(self.vf, feed_dict)[0]
elif self.type == 'q':
return sess.run(self.qmax, feed_dict)[0]
elif self.type == 'vpn':
q = sess.run(self.q_plan, feed_dict)
return q.max()
class CNN(Model):
def __init__(self, *args, **kwargs):
super(CNN, self).__init__(*args, **kwargs)
def build_model(self, x, meta=None):
for i in range(len(self.f_num)):
x = act_fn(conv2d(x, self.f_num[i], "l{}".format(i+1),
[self.f_size[i], self.f_size[i]],
[self.f_stride[i], self.f_stride[i]], pad=self.f_pad,
init="he"))
self.conv = x
if meta is not None:
space_dim = x.get_shape().as_list()[1:3]
meta_dim = meta.get_shape().as_list()[-1]
t = tf.reshape(tf.tile(meta,
[1, np.prod(space_dim)]), [-1] + space_dim + [meta_dim])
x = tf.concat([t, x], axis=3)
return x, [], []
class LSTM(Model):
def __init__(self, *args, **kwargs):
super(LSTM, self).__init__(*args, **kwargs)
def build_model(self, x):
for i in range(len(self.f_num)):
x = act_fn(conv2d(x, self.f_num[i], "l{}".format(i+1),
[self.f_size[i], self.f_size[i]],
[self.f_stride[i], self.f_stride[i]], pad=self.f_pad))
self.conv = x
x = act_fn(linear(flatten(x), 256, "l{}".format(3),
normalized_columns_initializer(0.01)))
# introduce a "fake" batch dimension of 1 after flatten
# so that we can do LSTM over time dim
x = tf.expand_dims(x, [0])
size = 256
lstm = rnn.rnn_cell.BasicLSTMCell(size, state_is_tuple=True)
self.state_size = lstm.state_size
step_size = tf.shape(self.x)[:1]
c_init = np.zeros((1, lstm.state_size.c), np.float32)
h_init = np.zeros((1, lstm.state_size.h), np.float32)
self.state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm.state_size.h])
state_in = rnn.rnn_cell.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm, x, initial_state=state_in, sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
state_out = [lstm_c[:1, :], lstm_h[:1, :]]
x = tf.reshape(lstm_outputs, [-1, size])
return x, state_in, state_out