-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathvpn.py
242 lines (209 loc) · 9.43 KB
/
vpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from __future__ import print_function
import numpy as np
import tensorflow as tf
import model # NOQA
import util
from q import Q
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
class RolloutMemory(object):
def __init__(self, max_size, sampling='rand'):
self.max_size = max_size
self.s = []
self.a = []
self.r = []
self.t = []
self.r_t = []
self.term = []
self.sampling = sampling
self.sample_idx = 0
def add(self, s, a, r, t, r_t, term):
self.s.append(s)
self.a.append(a)
self.r.append(r)
self.t.append(t)
self.r_t.append(r_t)
self.term.append(term)
def size(self):
return len(self.s)
def is_full(self):
return len(self.s) >= self.max_size
def sample(self, length):
size = len(self.s)
is_initial_state = False
if self.sampling == 'rand':
idx = np.random.randint(0, size-1)
if self.term[idx]:
return self.sample(length)
for end_idx in range(idx, idx + length):
if self.term[end_idx] or end_idx == size-1:
break
is_initial_state = (idx > 0 and self.term[idx-1]) or idx == 0
else:
idx = self.sample_idx
if self.term[idx]:
idx = idx + 1
for end_idx in range(idx, idx + length):
if self.term[end_idx] or end_idx == size-1:
break
self.sample_idx = end_idx + 1 if end_idx < size-1 else 0
is_initial_state = (idx > 0 and self.term[idx-1]) or idx == 0
assert end_idx == idx + length - 1 or self.term[end_idx] or end_idx == size-1
return util.Batch(si=np.asarray(self.s[idx:end_idx+1]),
a=np.asarray(self.a[idx:end_idx+1]),
adv=None,
r=None,
terminal=self.term,
features=[],
reward=np.asarray(self.r[idx:end_idx+1]),
step=np.asarray(self.t[idx:end_idx+1]),
meta=np.asarray(self.r_t[idx:end_idx+1])), is_initial_state
class VPN(Q):
def define_network(self, name):
self.state_off = None
self.args.meta_dim = 0 if self.env.meta() is None else len(self.env.meta())
m = eval("model." + name)(self.env.observation_space.shape,
self.env.action_space.n, type='vpn',
gamma=self.args.gamma,
prediction_step=self.args.prediction_step,
dim=self.args.dim,
f_num=self.args.f_num,
f_pad=self.args.f_pad,
f_stride=self.args.f_stride,
f_size=self.args.f_size,
branch=self.args.branch,
meta_dim=self.args.meta_dim,
)
return m
def process_rollout(self, rollout, gamma, lambda_=1.0):
"""
given a rollout, compute its returns
"""
batch_si = np.asarray(rollout.states)
batch_a = np.asarray(rollout.actions)
rewards = np.asarray(rollout.rewards)
time = np.asarray(rollout.time)
meta = np.asarray(rollout.meta)
rewards_plus_v = np.asarray(rollout.rewards + [rollout.r])
batch_r = util.discount(rewards_plus_v, gamma, time)
features = rollout.features[0]
return util.Batch(si=batch_si,
a=batch_a,
adv=None,
r=batch_r,
terminal=rollout.terminal,
features=features,
reward=rewards,
step=time,
meta=meta,
)
def define_loss(self):
pi = self.local_network
if self.args.buf > 0:
if pi.is_recurrent():
self.rand_rollouts = RolloutMemory(int(self.args.buf / self.args.num_workers),
sampling='seq')
self.off_state = pi.get_initial_features()
else:
self.rand_rollouts = RolloutMemory(int(self.args.buf / self.args.num_workers))
# loss function
self.ac = tf.placeholder(tf.float32, [None, self.env.action_space.n], name="ac")
self.v_target = tf.placeholder(tf.float32, [None], name="v_target") # target
self.reward = tf.placeholder(tf.float32, [None], name="reward") # immediate reward
self.step = tf.placeholder(tf.float32, [None], name="step") # num of steps
self.terminal = tf.placeholder(tf.float32, (), name="terminal")
time = tf.shape(pi.x)[0]
steps = tf.minimum(self.args.prediction_step, time)
self.rollout_num = tf.to_float(time * steps - steps * (steps - 1) / 2)
# reward/gamma/value prediction
self.r_delta = util.lower_triangular(
pi.r_a - tf.reshape(self.reward, [-1, 1]))
self.r_loss_mat = util.huber_loss(self.r_delta, sum=False)
self.r_loss = tf.reduce_sum(self.r_loss_mat)
self.gamma_loss_mat = util.huber_loss(util.lower_triangular(
pi.t_a - tf.reshape(self.step, [-1, 1])), sum=False)
self.gamma_loss = tf.reduce_sum(self.gamma_loss_mat)
self.v_next_loss_mat = util.huber_loss(util.lower_triangular(
pi.v_next_a - tf.reshape(self.v_target[1:], [-1, 1])), sum=False)
self.v_next_loss = tf.reduce_sum(self.v_next_loss_mat)
self.loss = self.r_loss + self.gamma_loss + self.v_next_loss
# reward/gamma prediction for off-policy data (optional)
self.a_off = tf.placeholder(tf.float32, [None, self.env.action_space.n], name="a_off")
self.r_off = tf.placeholder(tf.float32, [None], name="r_off") # immediate reward
self.step_off = tf.placeholder(tf.float32, [None], name="step_off") # num of steps
self.r_delta_off = util.lower_triangular(
pi.r_off - tf.reshape(self.r_off, [-1, 1]))
self.r_loss_mat_off = util.huber_loss(self.r_delta_off, sum=False)
self.r_loss_off = tf.reduce_sum(self.r_loss_mat_off)
self.gamma_loss_mat_off = util.huber_loss(util.lower_triangular(
pi.t_off - tf.reshape(self.step_off, [-1, 1])), sum=False)
self.gamma_loss_off = tf.reduce_sum(self.gamma_loss_mat_off)
self.loss += self.r_loss_off + self.gamma_loss_off
def prepare_input(self, batch):
feed_dict = {self.local_network.x: batch.si,
self.local_network.a: batch.a,
self.ac: batch.a,
self.reward: batch.reward,
self.step: batch.step,
self.target_network.x: batch.si,
self.terminal: float(batch.terminal),
self.v_target: batch.r}
for i in range(len(self.local_network.state_in)):
feed_dict[self.local_network.state_in[i]] = batch.features[i]
if self.args.meta_dim > 0:
feed_dict[self.local_network.meta] = batch.meta
traj, initial = self.random_trajectory()
feed_dict[self.local_network.x_off] = traj.si
feed_dict[self.local_network.a_off] = traj.a
feed_dict[self.a_off] = traj.a
feed_dict[self.r_off] = traj.reward
feed_dict[self.step_off] = traj.step
if self.local_network.is_recurrent():
if initial:
state_in = self.local_network.get_initial_features()
else:
state_in = self.off_state
for i in range(len(self.local_network.state_in_off)):
feed_dict[self.local_network.state_in_off[i]] = state_in[i]
if self.args.meta_dim > 0:
feed_dict[self.local_network.meta_off] = traj.meta
return feed_dict
def random_trajectory(self):
if not self.rand_rollouts.is_full():
env = self.env_off
state_off = env.reset()
meta_off = env.meta()
print("Generating random rollouts: %d steps" % self.rand_rollouts.max_size)
while not self.rand_rollouts.is_full():
act_idx = np.random.randint(0, env.action_space.n)
action = np.zeros(env.action_space.n)
action[act_idx] = 1
state, reward, terminal, _, time = env.step(action.argmax())
self.rand_rollouts.add(state_off, action, reward, time,
meta_off, terminal)
state_off = state
meta_off = env.meta()
if terminal:
state_off = env.reset()
meta_off = env.meta()
return self.rand_rollouts.sample(self.args.t_max)
def extra_fetches(self):
if self.local_network.is_recurrent():
return self.local_network.state_out_off
return []
def handle_extra_fetches(self, fetches):
if self.local_network.is_recurrent():
self.off_state = fetches[:len(self.off_state)]
def compute_depth(self, steps):
return self.args.depth
def write_extra_summary(self, rollout=None):
super(VPN, self).write_extra_summary(rollout)
def define_summary(self):
super(VPN, self).define_summary()
tf.summary.scalar("loss/r_loss", self.r_loss / self.rollout_num)
tf.summary.scalar("loss/gamma_loss", self.gamma_loss / self.rollout_num)
tf.summary.scalar("model/r", tf.reduce_mean(self.local_network.r))
tf.summary.scalar("model/v_next", tf.reduce_mean(self.local_network.v_next))
tf.summary.scalar("model/gamma", tf.reduce_mean(self.local_network.gamma))
self.summary_op = tf.summary.merge_all()