-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathworker.py
340 lines (300 loc) · 14.9 KB
/
worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#!/usr/bin/env python
import go_vncdriver
import tensorflow as tf
import argparse
import logging
import sys, signal
import time
import os
from a3c import A3C
from q import Q
from vpn import VPN
from envs import create_env
import util
import numpy as np
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
def new_env(args):
config = open(args.config) if args.config != "" else None
env = create_env(args.env_id,
str(args.task),
args.remotes,
config=config)
return env
# Disables write_meta_graph argument, which freezes entire process and is mostly useless.
class FastSaver(tf.train.Saver):
def save(self, sess, save_path, global_step=None, latest_filename=None,
meta_graph_suffix="meta", write_meta_graph=True):
super(FastSaver, self).save(sess, save_path, global_step, latest_filename,
meta_graph_suffix, False)
def run(args, server):
env = new_env(args)
if args.alg == 'A3C':
trainer = A3C(env, args)
elif args.alg == 'Q':
trainer = Q(env, args)
elif args.alg == 'VPN':
env_off = new_env(args)
env_off.verbose = 0
env_off.reset()
trainer = VPN(env, args, env_off=env_off)
else:
raise ValueError('Invalid algorithm: ' + args.alg)
# Variable names that start with "local" are not saved in checkpoints.
variables_to_save = [v for v in tf.global_variables() if \
not v.name.startswith("global") and not v.name.startswith("local/target/")]
global_variables = [v for v in tf.global_variables() if not v.name.startswith("local")]
init_op = tf.variables_initializer(global_variables)
init_all_op = tf.global_variables_initializer()
saver = FastSaver(variables_to_save, max_to_keep=0)
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
logger.info('Trainable vars:')
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
logger.info("Num parameters: %d", trainer.local_network.num_param)
def init_fn(ses):
logger.info("Initializing all parameters.")
ses.run(init_all_op)
device = 'gpu' if args.gpu > 0 else 'cpu'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.15)
config = tf.ConfigProto(device_filters=["/job:ps",
"/job:worker/task:{}/{}:0".format(args.task, device)],
gpu_options=gpu_options,
allow_soft_placement=True)
logdir = os.path.join(args.log, 'train')
summary_writer = tf.summary.FileWriter(logdir + "_%d" % args.task)
logger.info("Events directory: %s_%s", logdir, args.task)
sv = tf.train.Supervisor(is_chief=(args.task == 0),
logdir=logdir,
saver=saver,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
summary_writer=summary_writer,
ready_op=tf.report_uninitialized_variables(global_variables),
global_step=trainer.global_step,
save_model_secs=0,
save_summaries_secs=30)
logger.info(
"Starting session. If this hangs, we're mostly likely waiting to connect to the parameter server. " +
"One common cause is that the parameter server DNS name isn't resolving yet, or is misspecified.")
with sv.managed_session(server.target, config=config) as sess, sess.as_default():
sess.run(trainer.sync)
trainer.start(sess, summary_writer)
global_step = sess.run(trainer.global_step)
epoch = -1
logger.info("Starting training at step=%d", global_step)
while not sv.should_stop() and (not args.max_step or global_step < args.max_step):
if args.task == 0 and int(global_step / args.eval_freq) > epoch:
epoch = int(global_step / args.eval_freq)
filename = os.path.join(args.log, 'e%d' % (epoch))
sv.saver.save(sess, filename)
sv.saver.save(sess, os.path.join(args.log, 'latest'))
print("Saved to: %s" % filename)
trainer.process(sess)
global_step = sess.run(trainer.global_step)
if args.task == 0 and int(global_step / args.eval_freq) > epoch:
epoch = int(global_step / args.eval_freq)
filename = os.path.join(args.log, 'e%d' % (epoch))
sv.saver.save(sess, filename)
sv.saver.save(sess, os.path.join(args.log, 'latest'))
print("Saved to: %s" % filename)
# Ask for all the services to stop.
sv.stop()
logger.info('reached %s steps. worker stopped.', global_step)
def cluster_spec(num_workers, num_ps):
"""
More tensorflow setup for data parallelism
"""
cluster = {}
port = 12222
all_ps = []
host = '127.0.0.1'
for _ in range(num_ps):
all_ps.append('{}:{}'.format(host, port))
port += 1
cluster['ps'] = all_ps
all_workers = []
for _ in range(num_workers + 1):
all_workers.append('{}:{}'.format(host, port))
port += 1
cluster['worker'] = all_workers
port += 1
return cluster
def evaluate(env, network, num_play=3000, eps=0.0):
for iter in range(0, num_play):
last_state = env.reset()
last_features = network.get_initial_features()
last_meta = env.meta()
while True:
if eps == 0.0 or np.random.rand() > eps:
fetched = network.act(last_state, last_features,
meta=last_meta)
if network.type == 'policy':
action, features = fetched[0], fetched[2:]
else:
action, features = fetched[0], fetched[1:]
else:
act_idx = np.random.randint(0, env.action_space.n)
action = np.zeros(env.action_space.n)
action[act_idx] = 1
features = []
state, reward, terminal, info, time = env.step(action.argmax())
last_state = state
last_features = features
last_meta = env.meta()
if terminal:
break
return env.reward_mean(num_play)
def run_tester(args, server):
env = new_env(args)
env.reset()
env.max_history = args.eval_num
if args.alg == 'A3C':
agent = A3C(env, args)
elif args.alg == 'Q':
agent = Q(env, args)
elif args.alg == 'VPN':
agent = VPN(env, args)
else:
raise ValueError('Invalid algorithm: ' + args.alg)
device = 'gpu' if args.gpu > 0 else 'cpu'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.15)
config = tf.ConfigProto(device_filters=["/job:ps",
"/job:worker/task:{}/{}:0".format(args.task, device)],
gpu_options=gpu_options,
allow_soft_placement=True)
variables_to_save = [v for v in tf.global_variables() if \
not v.name.startswith("global") and not v.name.startswith("local/target/")]
global_variables = [v for v in tf.global_variables() if not v.name.startswith("local")]
init_op = tf.variables_initializer(global_variables)
init_all_op = tf.global_variables_initializer()
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, tf.get_variable_scope().name)
logger.info('Trainable vars:')
for v in var_list:
logger.info(' %s %s', v.name, v.get_shape())
logger.info("Num parameters: %d", agent.local_network.num_param)
def init_fn(ses):
logger.info("Initializing all parameters.")
ses.run(init_all_op)
saver = FastSaver(variables_to_save, max_to_keep=0)
sv = tf.train.Supervisor(is_chief=False,
global_step=agent.global_step,
summary_op=None,
init_op=init_op,
init_fn=init_fn,
ready_op=tf.report_uninitialized_variables(global_variables),
saver=saver,
save_model_secs=0,
save_summaries_secs=0)
best_reward = -10000
with sv.managed_session(server.target, config=config) as sess, sess.as_default():
epoch = args.eval_epoch
while args.eval_freq * epoch <= args.max_step:
path = os.path.join(args.log, "e%d" % epoch)
if not os.path.exists(path + ".index"):
time.sleep(10)
continue
logger.info("Start evaluation (Epoch %d)", epoch)
saver.restore(sess, path)
np.random.seed(args.seed)
reward = evaluate(env, agent.local_network, args.eval_num, eps=args.eps_eval)
logfile = open(os.path.join(args.log, "eval.csv"), "a")
print("Epoch: %d, Reward: %.2f" % (epoch, reward))
logfile.write("%d, %.3f\n" % (epoch, reward))
logfile.close()
if reward > best_reward:
best_reward = reward
sv.saver.save(sess, os.path.join(args.log, 'best'))
print("Saved to: %s" % os.path.join(args.log, 'best'))
epoch += 1
logger.info('tester stopped.')
def main(_):
"""
Setting up Tensorflow for data parallel work
"""
parser = argparse.ArgumentParser(description=None)
parser.add_argument('-gpu', '--gpu', default=0, type=int, help='Number of GPUs')
parser.add_argument('-v', '--verbose', action='count', dest='verbosity', default=0, help='Set verbosity.')
parser.add_argument('--task', default=0, type=int, help='Task index')
parser.add_argument('--job-name', default="worker", help='worker or ps')
parser.add_argument('--num-workers', default=1, type=int, help='Number of workers')
parser.add_argument('--num-ps', type=int, default=1, help="Number of parameter servers")
parser.add_argument('--log', default="/tmp/vpn", help='Log directory path')
parser.add_argument('--env-id', default="maze", help='Environment id')
parser.add_argument('-r', '--remotes', default=None,
help='References to environments to create (e.g. -r 20), '
'or the address of pre-existing VNC servers and '
'rewarders to use (e.g. -r vnc://localhost:5900+15900,vnc://localhost:5901+15901)')
parser.add_argument('-a', '--alg', choices=['A3C', 'Q', 'VPN'], default="A3C")
parser.add_argument('-mo', '--model', type=str, default="LSTM", help="Name of model: [CNN | LSTM]")
parser.add_argument('--eval-freq', type=int, default=250000, help="Evaluation frequency")
parser.add_argument('--eval-num', type=int, default=500, help="Evaluation frequency")
parser.add_argument('--eval-epoch', type=int, default=0, help="Evaluation epoch")
parser.add_argument('--seed', type=int, default=0, help="Random seed")
parser.add_argument('--config', type=str, default="config/collect_deterministic.xml",
help="config xml file for environment")
# Hyperparameters
parser.add_argument('-n', '--t-max', type=int, default=10, help="Number of unrolling steps")
parser.add_argument('-g', '--gamma', type=float, default=0.98, help="Discount factor")
parser.add_argument('-ld', '--ld', type=float, default=1, help="Lambda for GAE")
parser.add_argument('-lr', '--lr', type=float, default=1e-4, help="Learning rate")
parser.add_argument('--decay', type=float, default=0.95, help="Learning decay")
parser.add_argument('-ms', '--max-step', type=int, default=int(15e6), help="Max global step")
parser.add_argument('--dim', type=int, default=0, help="Number of final hidden units")
parser.add_argument('--f-num', type=str, default='32,32,64', help="num of conv filters")
parser.add_argument('--f-pad', type=str, default='SAME', help="padding of conv filters")
parser.add_argument('--f-stride', type=str, default='1,1,2', help="stride of conv filters")
parser.add_argument('--f-size', type=str, default='3,3,4', help="size of conv filters")
parser.add_argument('--h-dim', type=str, default='', help="num of hidden units")
# Q-Learning parameters
parser.add_argument('-s', '--sync', type=int, default=10000,
help="Target network synchronization frequency")
parser.add_argument('-f', '--update-freq', type=int, default=1,
help="Parameter update frequency")
parser.add_argument('--eps-step', type=int, default=int(1e6),
help="Num of local steps for epsilon scheduling")
parser.add_argument('--eps', type=float, default=0.05, help="Final epsilon value")
parser.add_argument('--eps-eval', type=float, default=0.0, help="Epsilon for evaluation")
# VPN parameters
parser.add_argument('--prediction-step', type=int, default=3, help="number of prediction steps")
parser.add_argument('--branch', type=str, default="4,4,4", help="branching factor")
parser.add_argument('--buf', type=int, default=10**6, help="num of steps for random buffer")
args = parser.parse_args()
args.f_num = util.parse_to_num(args.f_num)
args.f_stride = util.parse_to_num(args.f_stride)
args.f_size = util.parse_to_num(args.f_size)
args.h_dim = util.parse_to_num(args.h_dim)
args.eps_eval = min(args.eps, args.eps_eval)
args.branch = util.parse_to_num(args.branch)
spec = cluster_spec(args.num_workers, args.num_ps)
cluster = tf.train.ClusterSpec(spec).as_cluster_def()
def shutdown(signal, frame):
logger.warn('Received signal %s: exiting', signal)
sys.exit(128+signal)
signal.signal(signal.SIGHUP, shutdown)
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
gpu_options = None
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.15)
if args.job_name == "worker":
server = tf.train.Server(cluster, job_name="worker", task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
gpu_options=gpu_options))
run(args, server)
elif args.job_name == "test":
server = tf.train.Server(cluster, job_name="worker", task_index=args.task,
config=tf.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1,
gpu_options=gpu_options))
run_tester(args, server)
elif args.job_name == "ps":
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.05)
server = tf.train.Server(cluster, job_name="ps", task_index=args.task,
config=tf.ConfigProto(device_filters=["/job:ps"],
gpu_options=gpu_options))
while True:
time.sleep(1000)
if __name__ == "__main__":
tf.app.run()