-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathpcrpmm_1d_demo.py
61 lines (46 loc) · 1.45 KB
/
pcrpmm_1d_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
"""
A basic demo of 1D generated data for illustrating the PCRPMM.
Date: 2017
"""
import logging
import matplotlib.pyplot as plt
import numpy as np
import random
import sys
import collections
sys.path.append("..")
from pybgmm.prior import NIW
from pybgmm.igmm import PCRPMM
logging.basicConfig(level=logging.INFO)
random.seed(1)
np.random.seed(1)
def main():
# Data parameters
D = 1 # dimensions
N = 100 # number of points to generate
K_true = 4 # the true number of components
# Model parameters
alpha = 1.
K = 3 # initial number of components
n_iter = 40
# Generate data
mu_scale = 4.0
covar_scale = 0.7
z_true = np.random.randint(0, K_true, N)
logging.info("true clustering: {}".format(collections.Counter(z_true)))
mu = np.random.randn(D, K_true)*mu_scale
X = mu[:, z_true] + np.random.randn(D, N)*covar_scale
X = X.T
# Intialize prior
m_0 = np.zeros(D)
k_0 = covar_scale**2/mu_scale**2
v_0 = D + 3
S_0 = covar_scale**2*v_0*np.eye(D)
prior = NIW(m_0, k_0, v_0, S_0)
# Setup PCRPMM
pcrpmm = PCRPMM(X, prior, alpha, save_path=None, assignments="rand", K=K)
# pcrpmm = PCRPMM(X, prior, alpha, save_path=None, assignments="one-by-one", K=K)
# Perform collapsed Gibbs sampling
record_dict, distribution_dict = pcrpmm.collapsed_gibbs_sampler(n_iter, z_true, n_power=1.01, num_saved=K_true)
if __name__ == "__main__":
main()