-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathbranch_and_prune.py
306 lines (253 loc) · 10.5 KB
/
branch_and_prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import logging
import os
import sys
from itertools import product
from sage.all import Zmod
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared import bits_to_int_le
from shared import int_to_bits_le
# Section 3.
def _tau(x):
i = 0
while x % 2 == 0:
x //= 2
i += 1
return i
# Section 2.
def _find_k(N, e, d_bits):
best_match_count = 0
best_k = None
best_d__bits = None
# Enumerate every possible k value.
for k in range(1, e):
d_ = (k * (N + 1) + 1) // e
d__bits = int_to_bits_le(d_, len(d_bits))
match_count = 0
# Only check the most significant half.
for i in range(len(d_bits) // 2 + 2, len(d_bits)):
if d_bits[i] == d__bits[i]:
match_count += 1
# Update the best match for d.
if match_count > best_match_count:
best_match_count = match_count
best_k = k
best_d__bits = d__bits
return best_k, best_d__bits
# Section 2.
def _correct_msb(d_bits, d__bits):
# Correcting the most significant half of d.
for i in range(len(d_bits) // 2 + 2, len(d_bits)):
d_bits[i] = d__bits[i]
# Section 3.
def _correct_lsb(e, d_bits, exp):
# Correcting the least significant bits of d.
# Also works for dp and dq, just with a different exponent.
inv = pow(e, -1, 2 ** exp)
for i in range(exp):
d_bits[i] = (inv >> i) & 1
# Branch and prune for the case with p and q bits known.
def _branch_and_prune_pq(N, p, q, p_, q_, i):
if i == len(p) or i == len(q):
yield p_, q_
else:
c1 = ((N - p_ * q_) >> i) & 1
p_prev = p[i]
q_prev = q[i]
p_possible = [0, 1] if p_prev is None else [p_prev]
q_possible = [0, 1] if q_prev is None else [q_prev]
for p_bit, q_bit in product(p_possible, q_possible):
# Addition modulo 2 is just xor.
if p_bit ^ q_bit == c1:
p[i] = p_bit
q[i] = q_bit
yield from _branch_and_prune_pq(N, p, q, p_ | (p_bit << i), q_ | (q_bit << i), i + 1)
p[i] = p_prev
q[i] = q_prev
# Branch and prune for the case with p, q, and d bits known.
def _branch_and_prune_pqd(N, e, k, tk, p, q, d, p_, q_, i):
if i == len(p) or i == len(q):
yield p_, q_
else:
d_ = bits_to_int_le(d, i)
c1 = ((N - p_ * q_) >> i) & 1
c2 = ((k * (N + 1) + 1 - k * (p_ + q_) - e * d_) >> (i + tk)) & 1
p_prev = p[i]
q_prev = q[i]
d_prev = 0 if i + tk >= len(d) else d[i + tk]
p_possible = [0, 1] if p_prev is None else [p_prev]
q_possible = [0, 1] if q_prev is None else [q_prev]
d_possible = [0, 1] if d_prev is None else [d_prev]
for p_bit, q_bit, d_bit in product(p_possible, q_possible, d_possible):
# Addition modulo 2 is just xor.
if p_bit ^ q_bit == c1 and d_bit ^ p_bit ^ q_bit == c2:
p[i] = p_bit
q[i] = q_bit
if i + tk < len(d):
d[i + tk] = d_bit
yield from _branch_and_prune_pqd(N, e, k, tk, p, q, d, p_ | (p_bit << i), q_ | (q_bit << i), i + 1)
p[i] = p_prev
q[i] = q_prev
if i + tk < len(d):
d[i + tk] = d_prev
# Branch and prune for the case with p, q, d, dp, and dq bits known.
def _branch_and_prune_pqddpdq(N, e, k, tk, kp, tkp, kq, tkq, p, q, d, dp, dq, p_, q_, i):
if i == len(p) or i == len(q):
yield p_, q_
else:
d_ = bits_to_int_le(d, i)
dp_ = bits_to_int_le(dp, i)
dq_ = bits_to_int_le(dq, i)
c1 = ((N - p_ * q_) >> i) & 1
c2 = ((k * (N + 1) + 1 - k * (p_ + q_) - e * d_) >> (i + tk)) & 1
c3 = ((kp * (p_ - 1) + 1 - e * dp_) >> (i + tkp)) & 1
c4 = ((kq * (q_ - 1) + 1 - e * dq_) >> (i + tkq)) & 1
p_prev = p[i]
q_prev = q[i]
d_prev = 0 if i + tk >= len(d) else d[i + tk]
dp_prev = 0 if i + tkp >= len(dp) else dp[i + tkp]
dq_prev = 0 if i + tkq >= len(dq) else dq[i + tkq]
p_possible = [0, 1] if p_prev is None else [p_prev]
q_possible = [0, 1] if q_prev is None else [q_prev]
d_possible = [0, 1] if d_prev is None else [d_prev]
dp_possible = [0, 1] if dp_prev is None else [dp_prev]
dq_possible = [0, 1] if dq_prev is None else [dq_prev]
for p_bit, q_bit, d_bit, dp_bit, dq_bit in product(p_possible, q_possible, d_possible, dp_possible, dq_possible):
# Addition modulo 2 is just xor.
if p_bit ^ q_bit == c1 and d_bit ^ p_bit ^ q_bit == c2 and dp_bit ^ p_bit == c3 and dq_bit ^ q_bit == c4:
p[i] = p_bit
q[i] = q_bit
if i + tk < len(d):
d[i + tk] = d_bit
if i + tkp < len(dp):
dp[i + tkp] = dp_bit
if i + tkq < len(dq):
dq[i + tkq] = dq_bit
yield from _branch_and_prune_pqddpdq(N, e, k, tk, kp, tkp, kq, tkq, p, q, d, dp, dq, p_ | (p_bit << i), q_ | (q_bit << i), i + 1)
p[i] = p_prev
q[i] = q_prev
if i + tk < len(d):
d[i + tk] = d_prev
if i + tkp < len(dp):
dp[i + tkp] = dp_prev
if i + tkq < len(dq):
dq[i + tkq] = dq_prev
def factorize_pq(N, p, q):
"""
Factorizes n when some bits of p and q are known.
If at least 57% of the bits are known, this attack should be polynomial time, however, smaller percentages might still work.
More information: Heninger N., Shacham H., "Reconstructing RSA Private Keys from Random Key Bits"
:param N: the modulus
:param p: partial p (PartialInteger)
:param q: partial q (PartialInteger)
:return: a tuple containing the prime factors
"""
assert p.bit_length == q.bit_length, "p and q should be of equal bit length."
p_bits = p.to_bits_le()
for i, b in enumerate(p_bits):
p_bits[i] = None if b == '?' else int(b, 2)
q_bits = q.to_bits_le()
for i, b in enumerate(q_bits):
q_bits[i] = None if b == '?' else int(b, 2)
# p and q are prime, odd.
p_bits[0] = 1
q_bits[0] = 1
logging.info("Starting branch and prune algorithm...")
for p, q in _branch_and_prune_pq(N, p_bits, q_bits, p_bits[0], q_bits[0], 1):
if p * q == N:
return int(p), int(q)
def factorize_pqd(N, e, p, q, d):
"""
Factorizes n when some bits of p, q, and d are known.
If at least 42% of the bits are known, this attack should be polynomial time, however, smaller percentages might still work.
More information: Heninger N., Shacham H., "Reconstructing RSA Private Keys from Random Key Bits"
:param N: the modulus
:param e: the public exponent
:param p: partial p (PartialInteger)
:param q: partial q (PartialInteger)
:param d: partial d (PartialInteger)
:return: a tuple containing the prime factors
"""
assert p.bit_length == q.bit_length, "p and q should be of equal bit length."
p_bits = p.to_bits_le()
for i, b in enumerate(p_bits):
p_bits[i] = None if b == '?' else int(b, 2)
q_bits = q.to_bits_le()
for i, b in enumerate(q_bits):
q_bits[i] = None if b == '?' else int(b, 2)
# p and q are prime, odd.
p_bits[0] = 1
q_bits[0] = 1
d_bits = d.to_bits_le()
for i, b in enumerate(d_bits):
d_bits[i] = None if b == '?' else int(b, 2)
# Because e is small, k can be found by brute force.
logging.info("Brute forcing k...")
k, d__bits = _find_k(N, e, d_bits)
logging.info(f"Found {k = }")
_correct_msb(d_bits, d__bits)
tk = _tau(k)
_correct_lsb(e, d_bits, 2 + tk)
logging.info("Starting branch and prune algorithm...")
for p, q in _branch_and_prune_pqd(N, e, k, tk, p_bits, q_bits, d_bits, p_bits[0], q_bits[0], 1):
if p * q == N:
return int(p), int(q)
def factorize_pqddpdq(N, e, p, q, d, dp, dq):
"""
Factorizes n when some bits of p, q, d, dp, and dq are known.
If at least 27% of the bits are known, this attack should be polynomial time, however, smaller percentages might still work.
More information: Heninger N., Shacham H., "Reconstructing RSA Private Keys from Random Key Bits"
:param N: the modulus
:param e: the public exponent
:param p: partial p (PartialInteger)
:param q: partial q (PartialInteger)
:param d: partial d (PartialInteger)
:param dp: partial dp (PartialInteger)
:param dq: partial dq (PartialInteger)
:return: a tuple containing the prime factors
"""
assert p.bit_length == q.bit_length, "p and q should be of equal bit length."
p_bits = p.to_bits_le()
for i, b in enumerate(p_bits):
p_bits[i] = None if b == '?' else int(b, 2)
q_bits = q.to_bits_le()
for i, b in enumerate(q_bits):
q_bits[i] = None if b == '?' else int(b, 2)
# p and q are prime, odd.
p_bits[0] = 1
q_bits[0] = 1
d_bits = d.to_bits_le()
for i, b in enumerate(d_bits):
d_bits[i] = None if b == '?' else int(b, 2)
# Because e is small, k can be found by brute force.
logging.info("Brute forcing k...")
k, d__bits = _find_k(N, e, d_bits)
logging.info(f"Found {k = }")
_correct_msb(d_bits, d__bits)
tk = _tau(k)
_correct_lsb(e, d_bits, 2 + tk)
x = Zmod(e)["x"].gen()
f = x ** 2 - x * (k * (N - 1) + 1) - k
logging.info("Computing kp and kq...")
for kp in f.roots(multiplicities=False):
kp = int(kp)
kq = (-pow(kp, -1, e) * k) % e
logging.info(f"Trying {kp = } and {kq = }...")
# Make a copy for every try of kp and kq so we are sure these bits are not modified.
# We don't need to make a copy of p, q, and d bits in this loop because those bits only get modified in the branch and prune.
# The branch and prune algorithm always resets the bits after recursion.
dp_bits = dp.to_bits_le()
for i, b in enumerate(dp_bits):
dp_bits[i] = None if b == '?' else int(b, 2)
dq_bits = dq.to_bits_le()
for i, b in enumerate(dq_bits):
dq_bits[i] = None if b == '?' else int(b, 2)
tkp = _tau(kp)
_correct_lsb(e, dp_bits, 1 + tkp)
tkq = _tau(kq)
_correct_lsb(e, dq_bits, 1 + tkq)
logging.info("Starting branch and prune algorithm...")
for p, q in _branch_and_prune_pqddpdq(N, e, k, tk, kp, tkp, kq, tkq, p_bits, q_bits, d_bits, dp_bits, dq_bits, p_bits[0], q_bits[0], 1):
if p * q == N:
return int(p), int(q)