-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathcomplex_multiplication.py
58 lines (46 loc) · 1.82 KB
/
complex_multiplication.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import logging
import os
import sys
from math import gcd
from sage.all import EllipticCurve
from sage.all import Zmod
from sage.all import hilbert_class_polynomial
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared.polynomial import polynomial_inverse
from shared.polynomial import polynomial_xgcd
def factorize(N, D):
"""
Recovers the prime factors from a modulus using Cheng's elliptic curve complex multiplication method.
More information: Sedlacek V. et al., "I want to break square-free: The 4p - 1 factorization method and its RSA backdoor viability"
:param N: the modulus
:param D: the discriminant to use to generate the Hilbert polynomial
:return: a tuple containing the prime factors
"""
assert D % 8 == 3, "D should be square-free"
zmodn = Zmod(N)
pr = zmodn["x"]
H = pr(hilbert_class_polynomial(-D))
Q = pr.quotient(H)
j = Q.gen()
try:
k = j * polynomial_inverse((1728 - j).lift(), H)
except ArithmeticError as err:
# If some polynomial was not invertible during XGCD calculation, we can factor n.
p = gcd(int(err.args[1].lc()), N)
return int(p), int(N // p)
E = EllipticCurve(Q, [3 * k, 2 * k])
while True:
x = zmodn.random_element()
logging.debug(f"Calculating division polynomial of Q{x}...")
z = E.division_polynomial(N, x=Q(x))
try:
d, _, _ = polynomial_xgcd(z.lift(), H)
except ArithmeticError as err:
# If some polynomial was not invertible during XGCD calculation, we can factor n.
p = gcd(int(err.args[1].lc()), N)
return int(p), int(N // p)
p = gcd(int(d), N)
if 1 < p < N:
return int(p), int(N // p)