-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathbleichenbacher.py
110 lines (88 loc) · 2.82 KB
/
bleichenbacher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import logging
import os
import sys
from random import randrange
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from shared import ceil_div
from shared import floor_div
def _insert(M, a, b):
for i, (a_, b_) in enumerate(M):
if a_ <= b and a <= b_:
a = min(a, a_)
b = max(b, b_)
M[i] = (a, b)
return
M.append((a, b))
return
# Step 1.
def _step_1(padding_oracle, n, e, c):
s0 = 1
c0 = c
while not padding_oracle(c0):
s0 = randrange(2, n)
c0 = (c * pow(s0, e, n)) % n
return s0, c0
# Step 2.a.
def _step_2a(padding_oracle, n, e, c0, B):
s = ceil_div(n, 3 * B)
while not padding_oracle((c0 * pow(s, e, n)) % n):
s += 1
return s
# Step 2.b.
def _step_2b(padding_oracle, n, e, c0, s):
s += 1
while not padding_oracle((c0 * pow(s, e, n)) % n):
s += 1
return s
# Step 2.c.
def _step_2c(padding_oracle, n, e, c0, B, s, a, b):
r = ceil_div(2 * (b * s - 2 * B), n)
while True:
left = ceil_div(2 * B + r * n, b)
right = floor_div(3 * B + r * n, a)
for s in range(left, right + 1):
if padding_oracle((c0 * pow(s, e, n)) % n):
return s
r += 1
# Step 3.
def _step_3(n, B, s, M):
M_ = []
for (a, b) in M:
left = ceil_div(a * s - 3 * B + 1, n)
right = floor_div(b * s - 2 * B, n)
for r in range(left, right + 1):
a_ = max(a, ceil_div(2 * B + r * n, s))
b_ = min(b, floor_div(3 * B - 1 + r * n, s))
_insert(M_, a_, b_)
return M_
def attack(padding_oracle, n, e, c):
"""
Recovers the plaintext using Bleichenbacher's attack.
More information: Bleichenbacher D., "Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1"
:param padding_oracle: the padding oracle taking integers, returns True if the PKCS #1 v1.5 padding is correct, False otherwise
:param n: the modulus
:param e: the public exponent
:param c: the ciphertext (integer)
:return: the plaintext (integer)
"""
k = ceil_div(n.bit_length(), 8)
B = 2 ** (8 * (k - 2))
logging.info("Executing step 1...")
s0, c0 = _step_1(padding_oracle, n, e, c)
M = [(2 * B, 3 * B - 1)]
logging.info("Executing step 2.a...")
s = _step_2a(padding_oracle, n, e, c0, B)
M = _step_3(n, B, s, M)
logging.info("Starting while loop...")
while True:
if len(M) > 1:
s = _step_2b(padding_oracle, n, e, c0, s)
else:
(a, b) = M[0]
if a == b:
m = (a * pow(s0, -1, n)) % n
return m
s = _step_2c(padding_oracle, n, e, c0, B, s, a, b)
M = _step_3(n, B, s, M)