-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathboneh_durfee.py
84 lines (74 loc) · 3.51 KB
/
boneh_durfee.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import logging
import os
import sys
from sage.all import RR
from sage.all import ZZ
path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(os.path.abspath(__file__)))))
if sys.path[1] != path:
sys.path.insert(1, path)
from attacks.factorization import known_phi
from shared.small_roots import herrmann_may
def attack(N, e, factor_bit_length, partial_p=None, delta=0.25, m=1, t=None):
"""
Recovers the prime factors if the private exponent is too small.
This implementation exploits knowledge of least significant bits of prime factors, if available.
More information: Boneh D., Durfee G., "Cryptanalysis of RSA with Private Key d Less than N^0.292"
:param N: the modulus
:param e: the public exponent
:param factor_bit_length: the bit length of the prime factors
:param partial_p: the partial prime factor p (PartialInteger) (default: None)
:param delta: a predicted bound on the private exponent (d < N^delta) (default: 0.25)
:param m: the m value to use for the small roots method (default: 1)
:param t: the t value to use for the small roots method (default: automatically computed using m)
:return: a tuple containing the prime factors, or None if the factors were not found
"""
# Use additional information about factors to speed up Boneh-Durfee.
p_lsb, p_lsb_bit_length = (0, 0) if partial_p is None else partial_p.get_known_lsb()
q_lsb = (pow(p_lsb, -1, 2 ** p_lsb_bit_length) * N) % (2 ** p_lsb_bit_length)
A = ((N >> p_lsb_bit_length) + pow(2, -p_lsb_bit_length, e) * (p_lsb * q_lsb - p_lsb - q_lsb + 1))
x, y = ZZ["x", "y"].gens()
f = x * (A + y) + pow(2, -p_lsb_bit_length, e)
X = int(RR(e) ** delta)
Y = int(2 ** (factor_bit_length - p_lsb_bit_length + 1))
t = int((1 - 2 * delta) * m) if t is None else t
logging.info(f"Trying {m = }, {t = }...")
for x0, y0 in herrmann_may.modular_bivariate(f, e, m, t, X, Y):
z = int(f(x0, y0))
if z % e == 0:
k = pow(x0, -1, e)
s = (N + 1 + k) % e
phi = N - s + 1
factors = known_phi.factorize(N, phi)
if factors:
return factors
return None
def attack_multi_prime(N, e, factor_bit_length, factors, delta=0.25, m=1, t=None):
"""
Recovers the prime factors if the private exponent is too small.
This method works for a modulus consisting of any number of primes.
:param N: the modulus
:param e: the public exponent
:param factor_bit_length: the bit length of the prime factors
:param factors: the number of prime factors in the modulus
:param delta: a predicted bound on the private exponent (d < n^delta) (default: 0.25)
:param m: the m value to use for the small roots method (default: 1)
:param t: the t value to use for the small roots method (default: automatically computed using m)
:return: a tuple containing the prime factors, or None if the factors were not found
"""
x, y = ZZ["x", "y"].gens()
A = N + 1
f = x * (A + y) + 1
X = int(RR(e) ** delta)
Y = int(2 ** ((factors - 1) * factor_bit_length + 1))
t = int((1 - 2 * delta) * m) if t is None else t
logging.info(f"Trying {m = }, {t = }...")
for x0, y0 in herrmann_may.modular_bivariate(f, e, m, t, X, Y):
z = int(f(x0, y0))
if z % e == 0:
k = pow(x0, -1, e)
s = (N + 1 + k) % e
phi = N - s + 1
factors = known_phi.factorize_multi_prime(N, phi)
if factors:
return factors
return None